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Abstract

A generalization of a theorem by Pegna and Wolter—called Linkage Curve Theorem—is
presented. The new theorem provides a condition for joining two surfaces with high order geometric
continuity of arbitrary degreen. It will be shown that the Linkage Curve Theorem can be generalized
even for the case when the common boundary curve is onlyG1.  1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The construction of smooth, composite surfaces by joining adjacent surfaces is still an
interesting research topic in CAGD. Joining surfaces may occur along either a constant
parameter line or an arbitrary surface curve shared by the two surfaces. A typical example
for the former situation is the construction of a composite surface by merging parametric
patches along their borders. For the latter one the most important case to be considered is
blending, where a smooth transition surface needs to be joined to a surface with high order
smoothness along a contact curve.

Two theorems on joining curvature continuous surfaces were proved in (Pegna and
Wolter, 1992). The first one, called theThree Tangents Theoremstates the following:
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Theorem A. Two surfaces tangent at a pointp0 have the same normal curvatures if and
only if their normal curvatures agree in three tangent directions, of which any pair is
linearly independent.

The second theorem was calledLinkage Curve Theorem.(A curve is called linkage curve
if it is common surface curve of both surfaces.)

Theorem B. Two surfaces tangent along aC1-smooth linkage curve are curvature
continuous if and only if at every point of the linkage curve, their normal curvature agrees
for a direction other than the tangent to the linkage curve.

The generalization of the Three Tangents Theorem for higher order of smoothness was
addressed in (Wolter and Tuohy, 1992, p. 256) cf. Corollary 1 “n+ 1” Tangents Theorem,
(characterization ofn+1 order surface contact at a point). In this paper a generalization of
the Linkage Curve Theorem is given. The outline of the paper is the following. In Section
2 the concept of “higher order smoothness” will be briefly introduced. In Section 3 the
generalization of Theorem B is given. Finally we summarize our results in Section 4.

In the paper bold letters will denote vectors fromR3.

2. Higher order smoothness of curves and surfaces

We shall call a curve (surface)Gn continuous if there is a representation of it with a
regularCn map from a closed, bounded interval (or from a compact, simply connected
domain3 in R2) intoR3. As usual regularity means here that the first order differentials of
the curve (or surface) are of full rank. Note that this property is preserved at every regular
Cn reparameterizationof the curve (or surface).

(See further details in (DeRose and Barsky, 1985; Gregory, 1989; Herron, 1987).)
We say that two surfaces have aGn join if they areGn continuous, their intersection

contains a curve and if we consider their restrictions to one side of this curve the union of
these parts form aGn surface.

We shall need the following simple lemma:

Lemma 1. Let F : R2→ R3 be aGn surface, wheren > 0 and let us take an arbitrary,
but fixed pointp on F. Consider a coordinate system transformation where the origin
moves top and the direction of thez-axis points towards the surface normal atp.
The direction of thex-axis in the tangent plane is arbitrary, but fixed as well(and so
the y-axis is also determined). Then there is an openV ⊂ R3 and an openU ⊂ R2

and ann-times continuously differentiablef (x, y) function such thatp ∈ F ∩ V and
(x, y, f (x, y))= F⊂ V when(x, y) ∈U.

Proof. This follows directly from the definition by the Implicit Function Theorem, see
also (Pegna and Wolter, 1992).2
3 We could consider more general domains inR2 but this is irrelevant for this paper.
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Remark. Sometimes thisf (x, y) representation is called the Euler–Monge form of the
surfaceF.

Obviously iff (x, y) ∈ Cn then(x, y, f (x, y)) is aGn surface.
Similar statements are true for curves.
The lemma will be used in the proofs of the forthcoming Theorem 1. The significance

of the lemma is that it gives a common parametrization for all surfaces which are incident
to a given pointp and have a common tangent plane there in a neighbourhood ofp.

3. Linkage Curve Theorem forCn surfaces

Now we give a proper generalization of the Linkage Curve Theorem forGn surfaces.

Theorem 1. Let F andG beGn surfaces sharing a commonG1 curve denoted byR(t).
Suppose that there exists a family ofGn curvesEt (s)= E(t, s) so that eachEt is a surface
curve ofF for s 6 0, eachEt is a surface curve ofG for s > 0, andEt (0)=R(t) andE′t (0)
is not parallel toR′(t). ThenF andG have aGn continuous join.

Remark. A similar statement was proved in (Gregory, 1989). The main difference is that
here onlyG1 continuity is required forR. This is not important if one wants to apply
the theorem for joining patches along parameter lines, but it can be important when the
common surface curve is not a parameter line, for example in the case of blending.

Proof of Theorem 1. We prove the theorem by induction forn.
If n = 1 then we have to prove thatF and G have aG1 join. This is trivial since in

every point ofR(t) the normal vectors of bothF andG are parallel to the cross-product

Fig. 1. Join of surfacesF andG.
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of E′t (0) and R′(t) which is not0 due to our conditions. Hence both surfacesF andG
share a common tangent plane along theG1 linkage curveR(t). According to (Pegna and
Wolter, 1992, p. 208), this implies the existence of aC1 continuous Euler–Monge form
representing locally the union of the surfacesF andG.

Now suppose that the theorem holds forn− 1 and we want to prove it forn. Notice that
from the induction condition it follows thatF andG have aGn−1 join.

Let p0 = R(t0) be an arbitrary, but fixed point. It is enough to prove theGn join in the
neighborhood of this point. Now fix our coordinate system so thatp0 is the origin and
thez-axis is parallel to the surface normal there. Thex andy-axes are orthogonal to each
other and thez-axis. There is a neighborhood ofp0 so thatF andG can be represented as
(x, y, f (x, y)) and(x, y, g(x, y)) using suitableCn functions. Let

R(t)= (α(t), β(t), h(α(t), β(t)))
and

Et (s)=
(
ϕt(s),ψt (s), h

(
ϕt(s),ψt (s)

))
,

whereh is equal tof or g depending on the sign ofs (or in the case ofR it can be either
of them). Hereα andβ areC1, ϕt(s) andψt (s) areCn functions.

From the induction condition it follows that all partial derivatives off andg are equal
up to the(n− 1)th order:

∂mf (α(t), β(t))

∂xk∂ym−k
= ∂

mg(α(t), β(t))

∂xk∂ym−k
(k = 0, . . . ,m; m< n). (1)

If we can prove that thenth order partial derivatives are equal too then the proof is
complete. Now let us use the condition thatEt (s) ∈ Cn. Having differentiatedEt (s) n-
times with respect to the variables we obtain:

n∑
j=0

∂nf

∂xj∂yn−j

(
n

j

)
ϕ̇j ψ̇n−j + terms with lower order

−
n∑
j=0

∂ng

∂xj∂yn−j

(
n

j

)
ϕ̇j ψ̇n−j − terms with lower order= 0. (2)

As we have already remarked, the lower order terms are equal and so they cancel out from
the equation.

Form = n − 1, both sides of (1) are continuously differentiable functions oft . After
differentiating with respect to the variablet we have:

∂nf

∂xk+1∂yn−k−1 α̇ +
∂nf

∂xk∂yn−k
β̇ − ∂ng

∂xk+1∂yn−k−1 α̇ −
∂ng

∂xk∂yn−k
β̇ = 0

(k = 0, . . . , n− 1). (3)

Now we haven+ 1 equations for thenth order partial derivatives by (2) and (3). More
precisely, let the unknowns be thedifferencesof the corresponding partial derivatives then
we have a system withn−1 equations. Thenth equation is (2). The right side is 0, so if the
matrix of the system is non-singular then each unknown difference is zero, i.e., the partial
derivatives(k = 0, . . . , n) are also equal to each other and we proved our assertion.
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From (3) and (2) the determinant is the following:

D =

∣∣∣∣∣∣∣∣∣
β̇ α̇

β̇ α̇

β̇ α̇

. . .

b0 b1 b2 b3 . . . bn

∣∣∣∣∣∣∣∣∣ ,
wherebj =

(
n
j

)
ϕ̇j ψ̇n−j . After some algebra one obtains:

D =
n∑
j=0

(
n

j

)
ϕ̇j ψ̇n−j (−1)j β̇j α̇n−j = (α̇ϕ̇ − β̇ψ̇)n.

Therefore the determinant is equal to 0 if and only ifEt (s) is tangential toR(t), but this
was excluded by the condition of Theorem 1.2

4. Conclusion

In this paper a generalization of a theorem by Pegna and Wolter was described to extend
their idea for higher order smoothness between two adjacent surfaces.

It is obvious that the conclusion of Theorem 1 remains valid if we require the linkage
curve to be piecewise differentiable only. It is an interesting problem whether any kind of
further weakening of the related conditions is possible?
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