
Vis Comput (2011) 27: 129–139
DOI 10.1007/s00371-010-0539-6

O R I G I NA L A RT I C L E

YaDiV—an open platform for 3D visualization
and 3D segmentation of medical data

Karl-Ingo Friese · Philipp Blanke · Franz-Erich Wolter

Published online: 25 November 2010
© Springer-Verlag 2010

Abstract In this work, we present the concept, design and
implementation of a new software to visualize and segment
3-dimensional medical data. The main goal was to create a
platform that would allow trying out new approaches and
ideas while staying independent from hardware and oper-
ating system, being especially useful for interdisciplinary
research groups. A special focus will be given on fast and
interactive volume visualization, and a survey on the use of
Virtual Reality (VR) and especially haptic/force feedback in
medical applications will be provided.

The software will be published as Open Source and there-
fore be available as a rapid prototyping platform for own
ideas and plugins for all members of the scientific commu-
nity.

Keywords Medical visualization · Medical segmentation ·
Virtual reality · Haptics

1 Introduction

In recent years, 3D scans of parts of the human body became
a standard procedure in the clinical workflow. Tomography
techniques like Computer Tomography (CT), Magnetic Res-
onance Imaging (MRI) or Positron Emission Tomography

K.-I. Friese (�) · P. Blanke · F.-E. Wolter
Leibniz Universität Hannover, Welfengarten 1, Hannover,
Germany
e-mail: kif@welfenlab.de

P. Blanke
e-mail: blanke@welfenlab.de

F.-E. Wolter
e-mail: few@welfenlab.de

(PET) produce data in the form of a regular grid, often re-
ferred to as voxel data. While direct or indirect volume visu-
alization techniques are already valuable tools in diagnosis
and research, their output can be improved by the use of
additional segment information created with (semi-) auto-
mated segmentation techniques.

The sheer amount of scans and the resulting new tasks
in modern electronic medicine require new ways of data
interaction and manipulation. VR components like stereo-
graphic visualization and haptic interaction allow a more
natural and intuitive access to the relevant information than
conventional user interfaces. The new challenges require in-
terdisciplinary groups of researchers, i.e., surgeons, radiolo-
gists, mathematicians, programmers, etc. An open software
for medical visualization and segmentation being indepen-
dent from hardware as well as operating system (OS) will
significantly help to reduce the administrative efforts.

This paper addresses scientists from computer graphics
as well as medicine and touches different fields of active re-
search. Therefore, the attempt was made to write this paper
in a style that the different groups of readers can understand
all parts, by giving at least a short introduction to the basic
principles and concepts of each chapter.

2 Goals

The special requirements on a software for the tasks de-
scribed above can be summarized in five points:

1. (Open Source) To develop completely new approaches,
access to the complete source code is required.

2. (Platform Independence) To reduce administrative ef-
forts in large interdisciplinary research teams, a platform
independent software is mandatory.

mailto:kif@welfenlab.de
mailto:blanke@welfenlab.de
mailto:few@welfenlab.de

130 K.-I. Friese et al.

3. (Fast) While high quality visualization looks impressive,
in most cases a convenient, fast and interactive visual ac-
cess is needed, especially by medical users.

4. (Extendable) Many applications in medical research
are geared towards specific clinical problems, e.g., pre-
operative planning or cancer diagnosis. The software has
to be adaptable to support such use cases.

5. (Easy to Use) As the software should not only be a rapid
prototyping tool for programmers in the field of medical
visualization/segmentation, but also be tested and used
in clinical research, the interface has to be intuitive and
efficient on behalf of clinical requirements.

The last point also implies that the software has to be
sufficiently stable/mature (no proof-of-concept solution). At
the beginning of the development of YaDiV, no (free) soft-
ware fulfilled these requirements.

3 Overview of free DICOM software

Today, many free programs for interacting with DICOM
data are available, from simple tools (like anonymizers or
converters), plain 2D- or 3D-viewers to complex software
systems that allow interactive or high-end visualization, seg-
mentation support as well as data analysis. Since YaDiV be-
longs to the last category, a short overview over currently
active projects in this field should be given.

Almost all software systems are build using the Insight
Segmentation and Registration Toolkit (ITK) and Visual-
ization Toolkit (VTK). ITK is developed since 1999, be-
ing an Open Source Toolkit for Registration and Segmenta-
tion, containing data structures as well as algorithms. VTK
was originally part of the book “The Visualization Toolkit—
An Object-Oriented Approach to 3D Graphics” by Will
Schroeder, Ken Martin and Bill Lorensen [10], which be-
came one of the standard books in education. VTK contains
methods from the fields of 3D Graphics, 3D Modeling, Im-
age Processing, Volume Rendering and Scientific Visualiza-
tion and can visualize polygonal as well as discrete data.
Both VTK and ITK are written in C++.

3D Slicer

3D Slicer (current version 3.6) is an Open Source project
(BSD License) for Visualization and Image Analysis. The
program is in development since 1998, the first stable ver-
sion was released in 2008. The module based software sys-
tem allows integrating external plugins which can make use
of internal modules for visualization, segmentation, regis-
tration and filters. 3D Slicer is written in C++ and avail-
able for several OS, such as Windows, Linux and Mac OS
X. Slicer makes strong use of standard libraries such as

ITK/VTK or the NA-MIC Kit for the modular architec-
ture.

OsiriX

OsiriX is one of the oldest and most successful open source
tools for the visualization of multimodal medical images.
Similar to 3D Slicer, it is built upon ITK/VTK, but is writ-
ten in Objective-C and is only executable with Mac OS X.
The 32 bit version of OsiriX is developed under the GNU
Public Licence (LGPL), the 64 bit version is commercial.
OsiriX has a very user friendly GUI and contains a large
number of modules; however, due to the fact that it is devel-
oped only for one OS, its use, especially in larger interdisci-
plinary teams, is restricted.

MeVisLab

As opposed to the two other programs, MeVisLab itself
is not Open Source, but there exists a Software Devel-
opment Kit (SDK) that allows developing own modules
for 3D image processing and analysis using the innova-
tive build-in graphical editor. MeVisLab also uses ITK/VTK
and comes with four different license models (commercial,
non-commercial, evaluation and unregistered). The well de-
signed module editor makes MeVisLab a good choice for
rapid prototyping without the necessity of mature program-
ming skills.

4 YaDiV

YaDiV (Yet Another DICOM Viewer) was developed by
Karl-Ingo Friese [4], in cooperation with medical researchers
from the Hannover Medical School (MHH). The com-
plete software was developed from scratch and is not built
on ITK/VTK. The development started in 2006 with a
strong focus on 3D visualization and segmentation. At
that time, only a few Open Source DICOM systems were
available, and those did not have the desired functionali-
ties.

4.1 Concepts

Many algorithms working on (sometimes very large) med-
ical volume data sets exhibit very long run times. Since they
may produce (false) results due a wrong choice of parame-
ters, these may have to be corrected by the user either by se-
lecting other parameters and re-running the computation or
correcting the results manually. Therefore, one of the core
concepts of YaDiV is the heavy use of multi-threading for
every time-consuming method, thus not blocking the graph-
ical user interface (GUI). The user can observe the process
with an animated visualization of the intermediate results,

YaDiV—an open platform for 3D visualization and 3D segmentation of medical data 131

Fig. 1 Interactive visualization (segment and volume data) with
YaDiV

e.g., a segmentation method, and manually abort them at
every stage.

The software is designed to be an open platform that al-
lows the rapid development of new modules and applica-
tions in medical data processing. It contains a large set of
standard operations and integrates a plugin concept to allow
different scientists to develop their own (usually more spe-
cific) modules.

4.2 Visualization

“As a tool for applying computers to science, visualization
offers a way to see the unseen. As a technology, Visualization
in Scientific Computing promises radical improvements in
the human/computer interface and may make human-in-the-
loop problems approachable.” [6]

We differentiate between two different visualization
strategies: interactive visualization is designed for very
short response times, e.g., a fast validation of a segmen-
tation result, while high quality visualization focuses only
on the quality of the resulting image. Furthermore, we
distinguish between methods that visualize only the orig-
inal topographical data (raw data), those that use already
identified structure/segment information and methods that
use both kinds of information to generate a visual impres-
sion.

The visualization modules of YaDiV include fast and in-
teractive volume visualization using shaders and 2D or 3D
textures if the hardware supports this, as well as multiple
forms of segment visualization, e.g., surface representation
using an interactive self-refining marching cube with a mod-
ified lookup table. Figure 1 demonstrates interactive volume
and segment visualization with YaDiV. Also included is a
high quality ray casting module, using normal transfer func-
tions as well as segment information and optional artistic
lighting models.

Fig. 2 Influence of projection quad number in 2D/3D texturing, mea-
sured on a notebook graphic card (NVIDIA GeForce 9600M GT)

2D/3D texturing

As their name already suggests, texturing methods use the
2D/3D texture abilities of modern graphic cards to visualize
discrete volume data.

In the 2D texturing approach, 2D textures are mapped
onto parametrized quadrangular plane segments (quads) that
correspond to the tomographic images in the volume stack.
To avoid visual gaps, frontal, sagittal and transversal projec-
tion quads can be used. This results in a high memory load
but is usually very fast, since even modern graphic cards are
highly optimized in dealing with 2D textures.

A conceptional problem of 2D texturing are artifacts ap-
pearing when using transparent textures. Even modern 3D
graphic cards can draw transparent polygons only correct
when they are ordered “back to front” (painter algorithm).
Since the different orthogonal projection planes are overlap-
ping, this ordering cannot be done without cutting the planes
at their intersections. This would not only be time expen-
sive but also create new interpolation artifacts. By using a
3D texture, it becomes also possible to use only projection
quads that are orthogonal to the viewing direction. When the
object or the point of view is moved, not the quad geometry
but the texture coordinates are modified. Additional benefits
are the optional use of trilinear filtering to enhance image
quality or to use shaders, e.g., to simulate lighting effects.

To increase frame rate, YaDiV allows reducing the num-
ber of projection quads. In the 2D texturing case, this also
decreases the memory consumption. In the 3D texturing sit-
uation, the original 3D texture and with that the memory
requirement remains the same, so there is only the speedup
due to the reduced number of projection planes. Figure 2
shows the influence of the number of projection planes in 2D
(a)–(c) and 3D (d)–(f) texture visualization on visual impres-
sion, frame rate and memory consumption (Δ = 1 means
every volume slice is used, Δ = 2 every second, etc.). To
allow the visualization of very large volume data, it is also
possible to force YaDiV to use a lower texture dimension.

132 K.-I. Friese et al.

Table 1 YaDiV marching cube performance, CS = cube size, T =
number of triangles, ms = time in milliseconds, T/s = triangles per sec-
ond (notebook with Intel Core 2 Duo (2.4 GHz), 4 GB RAM, NVidia
9400M)

Data Set Segment CS T ms T/s

CT_Head
256 × 256 × 113

bone 4 26568 135 197k

2 125616 203 618k

1 543192 765 710k

brain 4 13288 36 369k

2 78384 240 327k

1 474152 578 821k

jaw 4 984 15 64k

2 6300 10 610k

1 30924 49 635k

VIX
512 × 512 × 250

bone 4 112192 322 348k

2 511588 1012 506k

1 2148580 3183 675k

flesh 4 89680 93 961k

2 372896 394 946k

1 1517008 2111 719k

Obelix_261
512 × 512 × 520

body 4 240932 652 370k

2 1017592 2449 416k

1 4202888 8308 506k

bone 4 186112 926 201k

2 902504 2015 448k

1 4009216 6818 588k

Interactive segment visualization

To visualize segments in 3D, a self-refining modified March-
ing Cube Method (MC) is used to approximate a triangu-
lated segment surface: Beginning with a cube size of 4, the
cube size is halved until the finest level or a configurable
maximum number of triangles is reached. The original MC
algorithm [5] visualizes iso-surfaces in regular grid data and
uses the grey value differences to smooth the surface. Since
segment data is binary, a geometric smoothing is necessary
to achieve a natural visual impression without artifacts due
to the grid structure of the data. The ambiguity problem of
the original MC was solved by using a modified lookup ta-
ble, resulting in a closed (waterproof) segment surface. Ta-
ble 1 demonstrates that the visualization speed is truly inter-
active: even on a notebook, the first refinement step of larger
data sets is reached in less than one second.

Ray Casting

Ray Casting belongs to the class of direct volume visual-
ization algorithms. A so-called transfer function maps each
intensity value to a color and opacity value. By casting an
imaginary ray from the viewpoint through each pixel of the

Fig. 3 High Quality Ray Casting Module of YaDiV: Standard Phong
Shading and Lit Sphere Mapping

resulting image, the color value is computed by sampling the
ray as it traverses the volume data. By using different sub-
voxel resolution interpolation methods (linear, cubic, sinc,
etc.), very high quality results can be achieved.

The Ray Casting Visualization of YaDiV was imple-
mented as modular and includes several options. In the most
simple case, a classic color/opacity transfer function and
phong lighting is used. Additionally, YaDiV supports indi-
vidual transfer functions for each segment and artistic light-
ing models such as Lit Sphere Mapping (see [2] and [11]),
where a 2D image of a lit sphere (hand drawn or computed)
is used to generate different shading effects, shown in Fig. 3.
During the manipulation of the transfer function, the 2D/3D
Texturing mode can be used as a fast preview for the out-
come. The code is modular and extendable so that new ideas
and features can easily be integrated.

Similar to the more complex segmentation routines, the
ray casting algorithm is written multi-threaded and profits
from modern multicore architectures. Strategies like early
ray termination, empty space skipping and an intelligent gra-
dient normal caching are also included and guarantee fast
high quality results.

4.3 Segmentation

A segment describes a meaningful subset of the voxel data,
in a medical context, for example, an organ, muscle or bone.
This subset does not have to be connected, e.g., a segment
could contain individual bone parts. The process of creating
a segment is called “segmentation”.

The most basic way to create a segment is doing it by
hand: a medical expert marks the relevant structure(s) on
each voxel layer, similar to a classic paint program. Depend-
ing on the structure and the resolution of the volume data,

YaDiV—an open platform for 3D visualization and 3D segmentation of medical data 133

this process can take from several minutes to several hours,
also the result may differ when done by different experts, es-
pecially on low resolution “blurry” data. The goal of every
automatic method is therefore to be either faster or more
precise (or at least better reproducible). From the computer
vision point of view, several attempts have been made to
classify segmentation methods into subclasses (e.g., “voxel-
based”, “edge-based”, “histogram-based”, etc.). Since most
of the more advanced methods fall into several categories,
we will only separate between “model-based” and “general”
algorithms in this paper. Model-based algorithms rely on a
priori information about the to-be-segmented structures and
are therefore designed for specific use cases, such as seg-
menting the liver. In contrast, general algorithms are com-
parable to tools that allow (usually in a creative combination
of several of them) segmenting many different structures.

YaDiV contains several built-in general segmentation
methods: range, region growing, moving contour and atlas-
based. Additionally it is possible to perform morphological
operations, remove small connected parts to eliminate noise,
or to correct the results of the general methods manually in
a free draw mode. All methods are implemented as threads,
some even use multiple cores (if available) and visualize the
intermediate segmentation results interactively during the
process. This is especially useful for computationally com-
plex methods, such as the moving contour algorithm which
can take up to several minutes, while more simple methods
like range or region growing segmentation usually take only
a few (milli-) seconds on a normal PC with standard clinical
CT/MRT resolution volume data.

All segmentation algorithms will not directly create or
modify a segment but always create a so called “selection”
of voxels. The selection can be copied into a (new) seg-
ment or added to/removed from an existing one. Also, seg-
ments can be copied back into the selection for further data
processing. Figure 4 illustrates this in an artificial example:
a sphere-shaped selection is removed from the three existing
segments for flesh, bone and brain.

As a design decision, no specific model-based methods
are included within the core version of YaDiV, to avoid
a large monolithic software which can do everything and
nothing. To keep the software easy to use and the interface
simple, model-based algorithms are implemented as plug-
ins which can be installed or removed at runtime, allowing
YaDiV to fit to the individual requirements of surgeons, neu-
roradiologists, orthopedists, etc.

Range and region growing segmentation

Range segmentation is a very simple but for many situations
still useful tool. By specifying an upper and lower intensity
value limit, e.g., the Hounsfield Values for bone if the data is
a CT scan, the user selects a range in the histogram defining

Fig. 4 Example for Boolean Segment operations (Screenshot of
YaDiV)

the segment. The algorithm is very fast and uses no addi-
tional memory.

Region growing starts from a user defined starting point
(seed) as segment and iteratively collects voxels from its
neighborhood. If the intensity values of the neighborhood
of the seed lie within a given variance of the seed inten-
sity, the voxels are added to the segment and considered as
new seeds. Region growing works also very fast and uses
(depending on the implementation) comparatively less ad-
ditional memory. In practical clinical use cases, a common
problem of region growing segmentation is that the algo-
rithm tends to expand over small connected tubes into neigh-
boring structures, e.g., two individual bones that are close to-
gether. This can be avoided by the use of the so-called block-
ing segments, defining “no-go” regions for the expansion
process. Alternatively, small connections can be removed in
a post processing with a morphological erosion that splits
the segment into different connectivity regions.

(Level set) moving contour methods

Instead of a single point, moving contour methods evolve
an initial contour line of a segment. In each evolution step,
the contour expands (or shrinks) depending on “inner” or
“outer” parameters. The classic problem of the moving con-
tour algorithms was that the initial contour’s topology has to
match the possibly unknown topology of the final segment.
The solution of this is the implicit definition of the con-
tour as a level set of a higher dimensional function. In [8],
Osher and Sethian proposed defining the contour as the

134 K.-I. Friese et al.

(zero-)level set of its own signed distance function (with
negative distance values in the inside of the segment). In-
stead of the contour itself, the distance function is evolved,
allowing the contour topology to change during the process.

YaDiV contains two different active contour modules.
The first is an edge stopping based approach which goes
back to the original idea of [8] but has been extended to the
3D case with different stopping functions. The basic idea
is that a contour C expands in every contour point in the
normal direction with a (non-negative) evolution speed F .
During the evolution, F is influenced by an inner factor, the
curvature of C and an outer factor, the so-called stopping
function g. To stop the expansion of the contour at edges in
the voxel image, g is usually defined using the gradient of
the volume data. The user can choose the curvature weight
(resulting in sphere-shaped contours or allowing more “fin-
gers”), the expansion speed as well as the stopping function.
Due to its design, this approach is useful when looking for
segments in an image with sharp edges. The curvature factor
controls whether the evolving contour may squeeze through
small holes—or not. Due to the fact that the method has
to calculate the gradient, an effective storage and caching
mechanism has to be used to reduce the memory footprint.

The second moving contour approach is based on the en-
ergy minimization idea, trying to minimize a functional of
the so-called “inner” and “outer” contour energy, consist-
ing of the mean intensity values of the voxels inside or out-
side the contour. In [3], Chan and Vese suggested (for the
2D case) including the volume of the inside and the area of
the contour as additional weighted parameters. With these
weights, the user can control if the evolution aims for more
compact or complex branching figures. The energy-based
moving contour approach uses again the level set of the
signed distance function. As opposed to the edge stopping
method, it is also suitable for segments with blurry edges.
As no gradients have to be calculated, the energy method is
faster and also less memory consuming than the edge stop-
ping algorithm.

Figure 5 shows the 2D visualization of the intermediate
results at different evolution steps of both approaches.

To speed up both contour evolution approaches, several
optimization strategies have been used. The first is the so-
called narrow band strategy, limiting the recalculation of
the distance function to a narrow area around the segment
contour. Additionally, the considered volume data can be
limited to a small, user defined box containing the to-be-
segmented structure. In the last step, the calculation of the
concrete distances is approximated by our own fast “onion-
ring” method. Nevertheless, both methods remain time ex-
pensive.

Due to their design, moving contour methods are very
flexible and can be adapted to many use cases. A typical
use case could be to get a good starting segment (generated,

Fig. 5 Moving Contour Segmentation with YaDiV: Edge Stopping
(a–c) and Energy Minimization (d–f)

e.g., by a more simple method or manual segmentation) and
use its contour to initialize the moving contour algorithm
with a low expansion speed. But the mathematical back-
ground also leads to a lack of user acceptance, as, for ex-
ample, most surgeons do not want to think about curvature
factors or contour area weights when performing a concrete
segmentation. Here there is much room for future develop-
ments, using these powerful methods in settings where para-
meters can be estimated and automatically fitted to a given
problem, thereby unburdening the user.

Atlas based segmentation

Atlas-based segmentation is a somewhat special case for
general segmentation methods, as the atlas could be under-
stood as an implicitly given model. But since the method
itself is generic, it still belongs to the general class. A good
overview over atlas based segmentation is given in [9].

The basic idea is to use previously segmented volume
data of the same body part (atlas) to find similar looking
structures in new tomography scans. This is done in three
steps: (i) choosing an atlas, (ii) registering the atlas to the
scan, (iii) using the registration transform to identify seg-
ments.

The first step requires user interaction—an appropriate
atlas could be the scan of a patient of the same gender, age
or with the same disease. If the scan is part of a study, pre-
viously segmented scans from the same patient can be used.

The registration step is performed automatically; in an it-
erative process, a transform T is found that maximizes the
similarity with respect to some similarity measure, e.g., the
mutual information of both volume data sets. In the cur-
rent implementation, the registration is performed in two
steps; an affine (rigid) and an elastic (non-rigid, using cu-
bic b-splines) transformation. To speed up the process, it is

YaDiV—an open platform for 3D visualization and 3D segmentation of medical data 135

Fig. 6 Atlas based segmentation: using mutual information as similarity measure

possible to use only a configurable percentage of the grid
data to compute the similarity measure. In our experiments
it turned out that considering 10% of the voxel data were
enough. Figure 6 shows the registration of two CT scans
(red and blue) together with the visualization of their joint
histogram.

If a sufficient similarity has been reached, the same trans-
formation is applied to the atlas segments. If an appropriate
atlas was chosen, the segments will already be valid in the
new scan. If such an atlas was not available, the identified
segments can be used in a post processing refinement step,
e.g., with a moving contour approach. It is also possible to
use more then one atlas (see, for example, [1]).

4.4 Virtual reality support

Tomography scans produce three dimensional data, but out-
put (monitor) and input devices (mouse) are still two dimen-
sional. This leads to a lack of intuitive interfaces. Even the
three dimensional looking images produced by 3D texturing
or ray casting methods are still two dimensional, similar to
classic photographs. The recent advancements in Virtual Re-
ality (VR) technology raise the hope of a more natural and
intuitive access to the relevant information.

Stereographic visualization

Stereographic visualization techniques allow an immediate
scene understanding. While on 2D monitors scene under-
standing comes usually from shading, moving the scene and
eye-hand navigation, stereography allows seeing even com-
plex objects in an intuitive human way, allowing deeper un-
derstanding and diagnosis. Similar to popular movies like
“Avatar”, the observer gets the impression that a “real” ob-
ject is directly in front of (or behind) the monitor. For stereo
visualization, it is necessary to compute not only one, but
two perspectively correct images: one for the left and one
for the right eye. This usually halves the frame rate.

Since Java3D, which is used by YaDiV to render 3D ob-
jects, directly supports stereographic visualization, it is pos-
sible to explore DICOM data on different stereographic de-
vices, e.g., stereo monitors, head mounted displays (HMD)

or stereographic projectors. No special stereo version of
the software is needed. When YaDiV detects stereographic
hardware, stereo visualization is enabled by default.

Haptic interface devices

While the stereographic visualization allows seeing virtual
objects as if they were real, haptic interfaces allow even
touching and manipulating them. Sometimes referred to as
haptic input devices, this terminology is somewhat mislead-
ing as mechanical energy is not only entered by the user but
also returned by the device. Haptic devices can be classi-
fied by their number of degrees of freedom, their workspace
dimension, the number of haptic interaction points and the
maximum force.

In the field of medicine, haptic input devices have cur-
rently three major use cases: pre-operative planning, ro-
bot assisted (minimal invasive) surgery (a good overview is
given in [7]) and training simulations. Only little research
has been done to enhance the human–computer interface, es-
pecially in 3D tasks like volume segmentation, registration
or navigation, where a 3D interface could allow complete
new intuitive tools.

There exists a prototype version of a haptic support mod-
ule for YaDiV which implements surface-based as well as
voxel-based haptic scene rendering. As currently only few
end users own haptic interfaces, this part will be redesigned
to become a plugin and is planned to be published early next
year.

4.5 Using YaDiV with non-medical data

Although YaDiV was developed with medical data in mind,
this is not the only field of science that produces regular
grid data. Engineers, for example, use tomography data for
materials research, while mineralogists analyze crystals and
vesicles shown in Fig. 8. We were approached by several
scientists who wanted to analyze their data and found ex-
isting specialized systems insufficient. Since their data was
not stored in the medical DICOM format, an image import
function was developed, that allows YaDiV to convert image

136 K.-I. Friese et al.

Fig. 7 Support of
Stereographic Hardware

Fig. 8 Non-medical volume
data examples from mechanical
engineering and mineralogy

data from the most common formats (JPG, TIFF, PNG, etc.)
to a volumetric representation. Thus, the complete array of
functions for segmentation and visualization of YaDiV were
available for the analysis of the data.

Especially the data from scientists of the Institute of Min-
eralogy at the Leibniz Universität of Hannover was tech-
nically demanding: in a common project, YaDiV is used
to visualize and analyze very high resolution data (2048 ×
2048 × 2048). For this, new memory saving storing tech-
niques with lossless reduction were developed. As a re-
sult, the possibility of fast 3D visualization lead the miner-
alogists to a deeper understanding of so far unseen struc-
tures. A statistical analysis plugin developed for this use
case allows for a much better calculation of statistically
relevant key parameters than conventional 2D methods, as

well as demonstrating the plugin capabilities of the sys-
tem.

4.6 Implementation

YaDiV is implemented in Java, therefore it is completely
independent from hardware and operating system and has
been tested on several platforms. The 3D graphic interface
uses the open source API of Java3D and supports many VR
components such as stereographic visualization (Fig. 7) on
multiple devices.

Due to efficient programming and the consequent use
of multi-threading, YaDiV profits from modern multicore
architectures—the de facto standard in every new PC or lap-
top. The result is not only a very fast implementation of,

YaDiV—an open platform for 3D visualization and 3D segmentation of medical data 137

Table 2 YaDiV Code Statistic (without plugins)

Number of packages 26

Number of classes 431

Total lines of code 42630

e.g., complex segmentation methods, but also an interactive
behavior, allowing to animate all processes and enabling the
user to abort them at an early state, e.g., when it is clear
that the final outcome of a moving contour method will not
match the desired anatomical structure.

The native data structure for segments is a binary regu-
lar grid with the dimensions of the voxel data, implemented
internally as a one-dimensional int/long array with a
three-dimensional access interface. All segment related data
structures and methods use native bitwise integer arithmetic
which is directly executed on the processor (see [12]) and
results in a speedup factor of up to 32 (up to 64 on 64 bit
computers).

An intuitive GUI with a rich integrated help system al-
lows even untrained users to achieve the desired results. The
support for haptic input devices as well as stereographic vi-
sualization guarantees a natural access to the information
and allows the development of complete new work flow ap-
proaches in interaction with the 3D anatomical data.

A clear separation between core and module packages
and the use of design patterns allows an easy extension of
the software. To prevent that customized modules “bleed”
into the main API, message passing and interface concepts
are used and the core library already contains a rich set of
standard operations.

5 Summary and outlook

The YaDiV system allows fast and interactive visualization
and segmentation of voxel data. The program is truly plat-
form independent and can be started even from an USB
stick. At the beginning of the development, it was not sure
if Java would be fast/memory efficient enough for large vol-
ume data, yet it turned out that in practical tests YaDiV ap-
pears to be as fast as or even faster than many other free and
commercial products.

YaDiV supports stereographic output devices but also
runs on every normal PC/Laptop. During the development,
the software was constantly tested by our medical partners
whose valuable feedback greatly influenced concepts and in-
terfaces.

The software is a good choice for interdisciplinary re-
search teams, not only in the medical field. Due to the import
abilities, the software is usable for a wide range of applica-
tions that deal with regular grid data, providing the scientific
community with a free platform which comes with a rich
tool set and many unique features.

By becoming open source, this software can serve as
a platform for trying out new ideas in all fields of sci-
ence that deal with regular grid data and become a valu-
able contribution to the scientific community. A regularly
updated closed source version of YaDiV is already available
at http://www.welfenlab.de/yadiv. The open source release
is scheduled for January 2011.

5.1 VR and man–machine interaction

As mentioned before, only few projects focus on the new
possibilities haptic and stereographic visualization offer to
the man–machine interaction.

A first example could be a human assisted registration
step in an atlas based segmentation. All known registration
methods are very good in optimizing a transformation to
get a local similarity maxima, but sometimes miss a (hu-
man obvious) better global solution. Humans, on the other
side, are very good at detecting global maxima but lack
the ability (and patience) to do a fine voxel-by-voxel opti-
mization. A system that would allow the medical expert not
only to visualize the situation stereographically but also to
grab and manipulate the data could be used as a fast, rough
pre-registration which is then automatically refined by algo-
rithms.

The authors of this paper believe that the new haptic in-
terface will influence the clinical workflow with 3D vol-
ume data in a similar way as the invention of the clas-
sic computer mouse influenced 2D tasks like paint pro-
grams or word processing. Therefore, it is planned to use
YaDiV as a platform to develop and test new approaches
in close contact with our medical partners. The necessary
modules (stereographic and fast visualization, segmentation
algorithms, support for haptic interfaces) are already imple-
mented.

5.2 Current projects

YaDiV is still in active development. As opposed to the re-
cent years, when the platform itself was extended and re-
designed, the development now focuses on specialized re-
search projects which are implemented as plugins.

An ongoing project in combination with Laboratory of
Biomechanics and Biomaterial (LBB) from the Hannover
Medical School (MHH) focuses on the automatic computa-
tion of knee joint kinematics by 3D in-vivo analysis using
an upright MRT. Together with the medical experts from
the MHH, a plugin is developed that will combine exist-
ing registration methods for patella, femur and tibia with in
house developments to analyze the 3D bone position with
and without natural loading.

Another project is focusing on the (semi-) automatic seg-
mentation of the orbita for post-surgical analysis. This work

http://www.welfenlab.de/yadiv

138 K.-I. Friese et al.

is a part of an international clinical research project by
the AO foundation (Davos, Switzerland) with principal in-
vestigator Prof. Gellrich, from the department for cranio-
maxillo-facial surgery, MHH. Together with Dr. Harald Es-
sig from the same department, our goal is to implement a
plugin for reliable orbita segmentation, that will allow mea-
suring certain statistics, e.g., the volume or the angle be-
tween orbita floor and the medial wall.

5.3 What is left to do?

Even after reaching a mature state, there are still many things
left to do. After cleaning up the code and releasing the soft-
ware as open source (scheduled for October 2010), an im-
portant usability feature would be to offer translations of
the dialogues, menus, etc. into different languages. Another
important step will be to rewrite the existing haptic device
module to work with the new plugin interface.

Even if YaDiV is already capable of dealing with many
different forms of regular grid data, it would also be inter-
esting to see if this could be extended to non-regular (recti-
linear, structured, maybe even unstructured) grids. Also, the
current implementation of the core data structures are only
capable of dealing with numbered grid data and it could be
worth to make tests, to see if a more general approach (e.g.,
by using generics) would decrease the performance drasti-
cally.

With the upcoming of massive parallel architectures, it
will be necessary to find a way to make use of their arith-
metic power without losing one of the core features, the in-
dependence from hardware and operating system. A possi-
ble solution for this might be the use of OpenCL. Currently,
several groups are working on a connection between Java
and OpenCL, e.g., JOCL, libCLcalc or the OpenCL-Branch
of the Native Libraries For Java Project.

Acknowledgements We would like to thank our medical partners
from the MHH, especially the departments of neuroradiology, the
clinic for oral and facial surgery and the laboratory of biomechanics
and biomaterials.

The following people helped to bring YaDiV to its current state:
Benjamin Berger, Sarah Cichy, Benjamin Fleischer, Richard Guercke,
Robert Meyer, Maximilian Müller, Dominik Sarnow, Björn Scheuer-
mann, Lara Toma, Marc Christoph Vollmer, Johannes Wahle and Yifan
Yu.

References

1. Aljabar, P., Heckemann, R., Hammers, A., Hajnal, J., Rueck-
ert, D.: Multi-atlas based segmentation of brain images: Atlas se-
lection and its effect on accuracy. NeuroImage 46(3), 726–738
(2009). doi:10.1016/j.neuroimage.2009.02.018

2. Bruckner, S., Gröller, E.: Style transfer functions for illustra-
tive volume rendering. Comput. Graph. Forum 26(3), 715–724
(2007)

3. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE
Trans. Image Process. 10(2), 266–277 (2001). doi:10.1109/83.
902291

4. Friese, K.I.: Entwicklung einer Plattform zur 3D-Visualisierung
und -Segmentierung medizinischer Daten. Ph.D. thesis, Leibniz
Universität Hannover, Faculty of Electrical Engineering and Com-
puter Science, Welfenlab, Germany (2010)

5. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution
3d surface construction algorithm. In: SIGGRAPH ’87: Proceed-
ings of the 14th Annual Conference on Computer Graphics and
Interactive Techniques, vol. 21, pp. 163–169. ACM Press, New
York (1987). doi:10.1145/37401.37422

6. McCormick, B., DeFanti, T.A., Brown, M.D. (eds.): Visualization
in Scientific Computing. ACM Comput. Graph., vol. 21(6). ACM
Press, New York (1987)

7. van der Meijden, O., Schijven, M.: The value of haptic feedback in
conventional and robot-assisted minimal invasive surgery and vir-
tual reality training: a current review. Surg. Endosc. 23(6), 1180–
1190 (2009). doi:10.1007/s00464-008-0298-x

8. Osher, S., Sethian, J.A.: Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton–Jacobi formu-
lations. J. Comput. Phys. 79(1), 12–49 (1988). doi:10.1016/
0021-9991(88)90002-2

9. Rohlfing, T., Brandt, R., Menzel, R., Russakoff, D.B., Maurer,
C.R., Jr.: Quo vadis, atlas-based segmentation. In: Suri, J., Wilson,
D.L., Laxminarayan, S. (eds.) Registration Models. The Hand-
book of Medical Image Analysis, vol. III, pp. 435–486. Kluwer
Academic/Plenum, New York (2005). Chap. 11

10. Schroeder, W., Martin, K., Lorensen, B.: The Visualization
Toolkit: An Object-Oriented Approach to 3D Graphics, 4th edn.
Kitware, Inc., Clifton Park (1997)

11. Sloan, P.P.J., Martin, W., Gooch, A., Gooch, B.: The lit sphere: a
model for capturing NPR shading from art. In: GRIN’01, pp. 143–
150. Can. Inf. Proc. Society, Toronto (2001)

12. Warren, H.S.: Hacker’s Delight. Addison-Wesley Longman Pub-
lishing, Boston (2002)

Karl-Ingo Friese studied Mathe-
matics and Computer Science at the
University of Hannover. He wrote
his Diploma Thesis on the topic:
“Surface Reconstruction of Volume
Models based on Discrete Data”
and finished his studies 2002. Since
then he is working as a Senior Re-
search Assistant at the Department
of Computer Graphics, Institute of
Man–Machine-Communication at
the Leibniz Universität Hannover.
During that time he wrote his PhD
thesis with the title “Development
of a Platform for 3D Visualization

and 3D Segmentation of Medical Data” (YaDiV). In former projects,
he was researching in the field of interactive landscape planing and
scientific visualization with game engines. His main research focus is
scientific visualization in interdisciplinary research projects.

http://dx.doi.org/10.1016/j.neuroimage.2009.02.018
http://dx.doi.org/10.1109/83.902291
http://dx.doi.org/10.1109/83.902291
http://dx.doi.org/10.1145/37401.37422
http://dx.doi.org/10.1007/s00464-008-0298-x
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1016/0021-9991(88)90002-2

YaDiV—an open platform for 3D visualization and 3D segmentation of medical data 139

Philipp Blanke studied Mathemat-
ics and Computer Science at the
University of Hannover and wrote
his diploma thesis on the topol-
ogy of medial sets of polyhedra
in Euclidean space. He received
his diploma in Mathematics (Mas-
ter’s equivalent) in December 2004.
Since then he is working at the Di-
vision of Computer Graphics of the
University of Hannover as a re-
search assistant and Ph.D. candi-
date. Currently, he is writing his
Ph.D. thesis on Fast Inverse Mate-
rial Flow in Hot-Forging.

Franz-Erich Wolter has been a full
professor of Computer Science at
the Leibniz University of Hannover
since the winter term of 1994/1995
where he directs the Division of
Computer Graphics and Geometric
Modeling called Welfenlab. Before
coming to Hannover, Dr. Wolter
held faculty positions at the Uni-
versity of Hamburg (in 1994), MIT
(1989–1993) and Purdue Univer-
sity in the USA (1987–1989). Prior
to this, he developed industrial ex-
pertise as a software and develop-
ment engineer with AEG in Ger-

many (1986–1987). Dr. Wolter obtained his PhD in 1985 from the
Department of Mathematics at the Technical University of Berlin, Ger-
many, in the area of Riemannian manifolds. In 1980, he graduated
in Mathematics and Theoretical Physics from the Free University of
Berlin. At MIT, Dr. Wolter codeveloped the geometric modeling sys-
tem Praxiteles for the US Navy from 1989 to 1993 and published vari-
ous papers that broke new ground applying concepts from differential
geometry and topology on problems and design of new methods used
in geometric modeling and CAD systems. In this context, he has con-
tributed pioneering concepts to shape and image cognition, construc-
tion and compression via tools from differential geometry employing,
e.g., spectra of the Laplace operator and computations of the medial
axis and geodesics in higher dimensional Riemannian spaces. During
the past ten years, he has extended his research to include projects on
haptic VR systems as well as mechanical-, bio-mechanical-simulation
and visualization systems. Dr. Wolter is a research affiliate of MIT.

	YaDiV-an open platform for 3D visualization and 3D segmentation of medical data
	Abstract
	Introduction
	Goals
	Overview of free DICOM software
	3D Slicer
	OsiriX
	MeVisLab

	YaDiV
	Concepts
	Visualization
	2D/3D texturing
	Interactive segment visualization
	Ray Casting

	Segmentation
	Range and region growing segmentation
	(Level set) moving contour methods
	Atlas based segmentation

	Virtual reality support
	Stereographic visualization
	Haptic interface devices

	Using YaDiV with non-medical data
	Implementation

	Summary and outlook
	VR and man-machine interaction
	Current projects
	What is left to do?

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

