
Haptic Rendering of Volume Data with Collision Determination Guarantee Using
Ray Casting and Implicit Surface Representation

Roman Vlasov

rvlasov@gdv.uni-hannover.de
Karl-Ingo Friese

kif@gdv.uni-hannover.de
Franz-Erich Wolter

few@gdv.uni-hannover.de
Institute of Man-Machine-Interaction, Leibniz Universität Hannover, Germany

Abstract—Haptic exploration adds an additional dimension
to working with 3D data: a sense of touch. This is especially
useful in areas such as medical simulation, training and pre-
surgical planning, as well as in museum display, sculpting,
CAD, military applications, assistive technology for blind
and visually impaired, entertainment and others. There exist
different surface- and voxel-based haptic rendering methods.
Unaddressed practical problems for almost all of them are
that no guarantees for collision detection could be given and/or
that a special topological structure of objects is required. Here
we present a novel and robust approach based on employing
the ray casting technique to collision detection, which does
not have the aforementioned drawbacks while guaranteeing
nearly constant time complexity independent of data resolution.
This is especially important for such delicate procedures as
pre-operation planning. A collision response in the presented
prototype system is rigid and operates on voxel data, and no
precalculation is needed. Additionally, our collision response
uses an implicit surface representation ”on the fly”, which can
be used with dynamically changing objects.

Keywords-haptics; haptic rendering; collision detection; colli-
sion response; collision resolution; ray casting; implicit surface

I. INTRODUCTION

With the evolution of medical scanning devices, espe-

cially Computed Tomography (CT) and Magnetic Resonance

Imaging (MRI), 3D volume data is nowadays widely used in

modern medicine. These modalities have become an integral

part of a clinical practice. Resulting 3D images are used

for diagnosis, therapy planning, interventional guidance, and

follow-up. 3D volume data is also in use in geology, CAD-

applications, entertainment and other areas.

In order to significantly increase usability and effectivity

of work with 3D data, an additional dimension could be

added to a virtual system - a sense of touch. This could

be done using a haptic device. With a haptic device a user

can both manipulate a virtual object and feel force feedback

reactions. Source data could be in different representations

(triangulated surface, hexahedrons, volumetric, ...), but we

focus on a volumetric one, since it is a direct output from

the scanning devices. Other data types could be transformed

to this one, if necessary.

There exist many haptic rendering methods, but almost

all of them have drawbacks that (1) ”thin” obstacles could

be skipped or an interaction point could go inside them

and/or (2) a certain topological structure of objects is needed,

such as connectivity or number of holes. The last is also an

important issue, since the real medical data we work with

can have any structure, especially if segmentation has been

done automatically. Here we present a novel approach that

does not have these problems by employing ray casting for

the collision detection and a ”sliding along a surface” model

for the collision response. Additionally, no precalculations

or explicit surface representations are needed. This means

that a virtual scene may be both dynamic or static. To our

best knowledge, the use of ray casting in haptic rendering is

a novel interdisciplinary approach being on the cutting edge

of visualization and haptic rendering research areas. Our

method was implemented and tested within the framework

provided by the YaDiV platform [1] – a powerful virtual

system for working with 3D volume data. This allows us to

combine novel haptic rendering methods for exploration of

medical data with high-quality visualization. Our approach

has nearly constant time complexity independent of data res-

olution and is very fast – up to 750 points could be simulated

at haptic update rates (1 kHz) for the collision detection only

and up to 150 points for the collision detection and collision

response (both values are given for a moderate end-user PC).

This allows to perform object-object collision detection at a

sufficient speed.

II. DEFINITIONS

A. Volume Data

In the field of medical visualization volume data, also

called volumetric data, is usually acquired with CT or

MRI. The result of such an acquisition process is a data

set consisting of pairs < coordinates, intensity value >,

where the intensity value is a scalar measured by a scanning

device (e.g. the value of unabsorpted X-rays) [2]. One can

take a look for a detailed description of volume data and

related terms in [3].

As far as scanned data has no color or tissue information,

a segmentation step could further be needed. Segmentation
is a process to extract certain structures from a volume

data set. In medical context this can be anatomical organs,

like kidney or bones, or pathological structures, like tumors.

The segmentation process is a large field of research, and

2012 International Conference on Cyberworlds

978-0-7695-4814-2/12 $26.00 © 2012 IEEE

DOI 10.1109/CW.2012.20

91

2012 International Conference on Cyberworlds

978-0-7695-4814-2/12 $26.00 © 2012 IEEE

DOI 10.1109/CW.2012.20

91

2012 International Conference on Cyberworlds

978-0-7695-4814-2/12 $26.00 © 2012 IEEE

DOI 10.1109/CW.2012.20

91

Figure 1. Haptic rendering of the Torso data set using INCA 6D device

different approaches for different purposes have already been

proposed (see e.g. [2] and [4] for an overview and suggested

methods). We assume that 3D data is already segmented, i.e.

that a set of segments (a set of scene objects) is provided.

We use a bit cube representation of segments (see [4] for

details), though other representations are possible.

B. Haptics
The term haptic (from the Greek haptesthai, meaning ”to

touch”) is an adjective used to describe something relating

to or based on the sense of touch. Haptic is to touching as

visual is to seeing and as auditory is to hearing.
The definitions below will be used in the rest of the paper.

A haptic device (or haptic display) is capable of tracking

its own position and/or orientation and stimulates the kines-

thetic sense of the user via a programmable force feedback.

A probe (or end-effector) (of a haptic display) is the part

of the device the position/orientation is tracked for (passive

Degrees-of-Freedom/DoF) and a force feedback is applied

to (active DoF).

A tool (in a virtual world) is an object in the virtual world

the user manipulates via the probe. A particular case is the

(haptic) interaction point (if the object is a 3D point).

A handle (in a virtual world) is a grasped part of the tool.

III. OVERVIEW OF RELATED WORK

A haptic rendering application should solve three main

tasks: contact determination (also called collision detection),

collision response and generation of force feedback (see

figure 2). All stages are often tightly integrated in order to

effectively use a solution of one task for solving others.
There are two ways of controlling a haptic display:

1) admittance control (a user applies a force to the device,

and the application moves the probe according to the

simulation)

2) impedance control (a user moves the probe of the

device, and the application produces forces).

According to [5] and [6], the impedance control scheme

is cheaper and easier to construct and is usually used

nowadays. It is also assumed in our work.

Figure 2. Haptic rendering pipeline

The quality of haptic rendering can be measured in terms

of a dynamic range of impedances that can be simulated in a

stable manner: a perceived impedance (i.e. force) should be

very low for movements in free space and high for contacts

between a rigid tool and rigid objects. So, the probe should

stop quickly if rigid contact between the tool and a virtual

obstacle occurs. But because of existence of sample and

latency phenomena, unstable behavior of the probe could

arise in such cases. This instability is directly perceived by

a user in a form of disturbing oscillations. It is even possible

that the tool passes through an obstacle because of a fast

movement, or it appears at different sides of it in succeeding

frames. In connection with these issues Colgate et al. showed

in [7] that a computation of feedback forces at a high update

rate is important for haptic rendering stability. According to

Brooks et al. [8] it should be at least 0.5 - 1 kHz.

To address the aforementioned requirement, there exist

two main techniques of handle manipulation:

1) direct rendering (apply manipulations with the probe

directly to the handle)

2) virtual coupling (connect the haptic probe to the

handle through a virtual spring-damper connection).

Direct rendering is useful if a haptic rendering method can

perform all the stages at an update rate sufficient for a stable

user interaction (1 kHz). The virtual coupling is good in rest

cases, e.g. for multirate approaches, when force feedback is

generated at 1 kHz, but physics simulation, say, at 30 Hz.

Virtual coupling was firstly proposed by Colgate et al. [7].

We should also note that a force update rate of 1 kHz is

generally not sufficient for stable haptic rendering. It means

that other issues, such as too fast object movement or too

strong forces, should be addressed in the system.

There are different haptic rendering approaches, starting

with those very early, like [9] in 1995 and [10]. In the

following we will give an overview of existing methods.

Zilles and Salisbury [11] proposed a god-object non-

penetration approach for 3-Degrees-of-Freedom (3-DoF).

Later it was extended to 6-DoF by Ortega et al. [12]. An

extension of the god-object idea in 3-DoF is a ”virtual

proxy” [13]. At each frame, the position of the probe in

a virtual environment is set as a goal for the tool. Then

possible constraint surfaces are identified using the ray

929292

between the old position of the virtual proxy (the tool)

and the goal position. After that a quadratic optimization

problem is solved and a subgoal position is found. This

process is repeated until the subgoal position could not be

closer to the goal. An extended 6-DoF technique of virtual

proxy was used in [14].

McNeely et al. [15] developed a 6-DoF haptic rendering

method for the Boeing Company. They proposed to use

a voxmap (spatial occupancy map) and object pointshells.

Volumetric data and penalty pre-contact forces were used.

Later this approach was significantly improved in the next

works of McNeely and others [16] and [17]. Basing on the

above method, Barbic et al. [18], [19] proposed their own

approach, which supports a contact between a rigid and a

reduced deformable models, both with complex geometry.

A distributed contact between objects is allowed, i.e. an in-

teraction with potentially several simultaneous contact sites.

A pointshell-based hierarchical representation was used for

the deformable object and a signed-distance field for the

rest of the scene. Later in [20] the distance field was made

parametrically deformable.

A completely different haptic rendering approach was

suggested by Otaduy, Lin et al. [21], [22]. Their method

allows haptic rendering of interaction between ”haptically

textured” triangulated models (with fine surface details

stored as a height field). Collision detection between low-

resolution meshes is based on sensation-preserving contact

levels of detail from [23], [24]. An evolution of the method

are works [25] of Otaduy and Gross, where environmental

objects are deformable (represented by tetrahedral meshes),

and [26]. In the last work, a layered representation of

objects is employed: a low-resolution mesh for the collision

detection and haptic interaction, a deformable tetrahedral

mesh for deformation computations and a detailed surface

mesh for the deformable skin simulation. Further on, in [27]

Garre and Otaduy presented a method, where both the tool

and environmental objects could be deformable.

Another interesting approach was suggested by Johnson

and Willemsen [28], [29]. They used spatialized normal

cone hierarchies for fast collision detection between the tool

and an environmental object. Weller and Zachmann [30]

presented inner sphere trees – a structure which bounds an

object from inside with a set of non-overlapping bounding

volumes – and employed it for haptic rendering.

Duriez et al. [31] proposed a method using Signorini’s

contact model for deformable objects in haptic simulations

with a focus on contact response. It belongs to approaches

with non-penetration constraints and is independent from

a collision/proximity detection. In the later work [32] the

authors incorporated friction into the simulation model.

Debunne et al. [33] presented a method for animating

dynamic deformations of a visco-elastic object with a guar-

anteed frame-rate, built into a 6-DoFs haptic rendering

framework. An object is represented via a tetrahedral mesh,

and the proposed physical simulation approach belongs

to physics-based continuous models. Kuroda et al. [34]

presented a simulation framework, where the manipulating

point pushes a deformable object, which is in contact with

another one. A work of Basdogan et al. [35] is devoted to

6-DoF haptics in minimally invasive surgical simulation and

training. One more method for a ”physically realistic” virtual

surgery was suggested by De et al. [36]. They used the

Point-Associated Finite Field (PAFF) approach. The idea is

to discretize the computational domain (e.g. an organ) using

a scattered set of points (”nodes”) with spherical influence

zone and defined nodal shape function for it. Maciel et al.

[37] also presented a haptic rendering method for physics-

based virtual surgery, but using NVIDIA’s PhysX physics

liblary, which is GPU accellerated. The method supports 6-

DoF. Luciano et al. [38] devoted their work to a local elastic

point-based deformation around a contact point in 3-DoF

haptic rendering.Chang et al. [39] proposed a 6-DoF haptic

rendering method using the mass-spring simulation model.

Vidal et al. [40] made a simulation of ultrasound guided

needle puncture and proposed a proxy-based surface/volume

haptic rendering for that. Palmerius et al. [41] have shown

in their work how subdivision of proxy movements can

improve precision of volume haptic rendering. Kim and

others [42] presented a method, which uses implicit sur-

face representations and requires some preprocessing and a

certain topology. An approach devoted to haptic rendering

of volume-embedded isosurfaces was suggested by Chan

et al. [43]. Another haptic rendering method, which uses

isosurfaces defined by interpolating on tetrahedral meshes,

was recently proposed by Corenthy et al. [44]. In [45], [46]

Boettcher et al. suggested a kinesthetic haptic rendering

of virtual fabrics grasped by two fingers. The fingers are

represented via spherical tools manipulated by two 3-DoFs

probes. The simulation of tactile perception of the fabrics

was proposed by Allerkamp et al. [47], [48]. Later on, in [49]

Boettcher et al. described a generalized multi-rate coupling

scheme of physical simulations for haptic interaction with

deformable objects.

As was mentioned at the beginning of this work, almost all

methods can not give collision detection and non-penetration

guarantees. Additionally, many of them require a special

topological structure of objects. In the next sections we

present our approach, which does not have these drawbacks.

IV. OUR APPROACH

A. Ray Casting

A key technique for the collision detection in our haptic

rendering pipeline is ray casting in volumetric data. This

technique has its roots in computer graphics.

In more detail, as far as the source data for haptic

rendering is volumetric, we employed the very popular [50]

ray casting visualization technique (see e.g. [50]–[55]) and

adapted it to our needs.

939393

The idea of ray casting in visualization is to numerically

evaluate the volume rendering integral in a straightforward

manner. The rendering integral Iλ(x, r), i.e. the amount of

the light of wavelength λ coming from a ray direction r that

is received at location x on the image plane, is:

Iλ(x, r) =

L∫
0

Cλ(s)μ(s)e
−

s∫
0

μ(t)dt

ds, (1)

where L – the length of the ray r; μ – absorption (extinction)

coefficient at the specified position on the ray r; Cλ –

amount of the light of wavelength λ emitted at the specified

position on the ray r.

The used optical model in the method is ”Absorption

and Emission” (the volume consists of particles that absorb

and emit light, see [56]) with the restriction, that only a

directional light parallel to the viewing direction is allowed.

For each pixel of the image a ray is cast into the scene.

Along the cast ray the intensity values of the volumetric data

are resampled at equidistant intervals, usually using trilinear

interpolation. After the resampling an approximation of the

volume rendering integral along the ray in either back-to-

front or front-to-back order is computed. In this process the

mapping of the < coordinates, scalar value > pairs for

the resampled points to colors and opacities according to a

previously chosen transfer function is used.

B. Collision Detection

The method was given in short in our work [57]. In this

subsection we present it in more detail.

As was mentioned above, the original method returns

a numerical evaluation of the volume rendering integral

along a given ray. In our case, for the interaction point (IP)

following the position of the manipulator, we perform ray

casting from its last position to the current one. In more

detail, we are going along the ray with 1-voxel step. If

the value of any bit cube representing an obstacle at the

sampled point is true then true and a collision information

is returned by the collision detection procedure. False is

returned otherwise. See the figure 3 for details. We use 1-

voxel step, because a minimum possible thickness of an

object is also one voxel. By performing the ray casting we

can always find the exact collision, if it happened between

the haptic rendering updates, and react to it accordingly. To

our best knowledge, there exists only one method (see [12]),

which provides the same collision detection guarantees as

ours, but it only works with triangulated objects and not

with volumetric / voxel based data.

In order to have even higher precision for collision

detection, ray casting at sub-voxel resolution or sampling

once between each pair of consecutive intersections of the

ray and a grid plane could be used. Though we found that

1-voxel step is quite enough for our experimental data.

Figure 3. The ray from the previous position p1 to the current one p2 is
cast with 1-voxel step until an obstacle is found or p2 is reached

To further speed up the computations, we firstly create a

list of objects that are determined as collision candidates.

For that, we check if the ray from the last position to

the current one collides with the Axis-Aligned-Bounding-

Box (AABB) of each object. If so, then the object is a

candidate. The detailed collision detection is performed for

these candidates only.

Additionally, we impose a reasonable upper limit on the

maximal movement of the IP between two haptic frames.

This allows us to perform localized and therefore faster

ray casting using the cached information from the previous

frame and avoid possible haptic rendering instabilities (the

last is also done in [19]).

If all data has been already loaded then the time complex-

ity of the method is

O

(
Nobj · wmax

step

)
, (2)

where Nobj – number of objects in the scene; wmax –

maximum path length per frame, in voxels; step – the

sampling step of ray casting (chosen as 1).

Indeed, in the worst case all objects in the scene could

become the collision candidates and be checked all the way

from the previous position of the IP to the current one.

C. Collision Response

The collision detection method described above is used

in our joint collision detection and response stage of the

haptic rendering pipeline. The method is based on the god

object/proxy paradigm. It works directly with volumetric

data and has no limitations.

As the IP should not go inside any object or pass through

it, we make it slide over the surface. The surface is calculated

locally ”on the fly”. The IP can encounter multiple surfaces

on its way. It is connected with the actual position of the

device’s manipulator via a virtual spring. This approach

was made to test the capacities and speed of our collision

detection method and as a base for further experiments.

We denote the position of the IP from the last frame

as p1 and the one to be calculated as p2. For the device’s

manipulator, we denote its last position as d1 and the current

one as d2. The IP always moves in the direction of d2.

Empty-space border voxels below are the voxels, which are

empty but have at least one non-empty N26-neighbour.

949494

The algorithm deals with different obstacles at the same

time and looks as follows:

1: Get p1, d1, d2
2: p2 := p1 // Initialize p2
3: p2last := p2 - (1,1,1) // make it unequal to p2
4: w := 0 // Path length travelled by the IP at this frame

5: while (p2 �=d2 and w < wmax and p2last �=p2) do
6: p2last := p2
7: Make the collision test from p2 to d2
8: if (no collision) then
9: Move p2 towards d2 for the distance min(||d2-p2||2 ,

wmax − w)

10: w := w + (the above movement of p2)

11: break
12: else
13: Move p2 towards the collision point pcol so that it

is at the given ε < 1 before pcol, or for the distance

(wmax − w) from p2 in case the last is shorter

14: w := w + (the above movement of p2)

15: // Slide over the obstacle in the direction of d2:

16: while w < wmax and p2 �=d2 do
17: // Is it shorter just to move from p2 towards d2
18: // without following the surface?

19: if (p2 will not be inside any obstacle if moved

by 1 voxel towards d2) then
20: // We will move directly to d2 at the beginning

21: // of the next iteration of the outer loop

22: break
23: end if
24: Locate neighbour empty-sp. border voxels for p2
25: Select a voxel with the biggest dot product of

(voxel-p2) and (d2-p1)

26: if (the biggest dot product ≤0) then
27: break
28: end if
29: Move p2 towards the selected voxel for the

distance min(||voxel-p2||2 , wmax − w)

30: if (p2 is inside another obstacle) then
31: Cancel the above movement of p2
32: break
33: end if
34: w := w + (the above movement of p2)

35: end while
36: end if
37: end while

Note: If the empty-space border voxels are precalculated

for each segment at the preprocessing step then it gives 25%

speed-up. All the frame rates in our paper are given for the

case without preprocessing.

D. Force Feedback
The specificity of our force feedback generation is that we

do not use surface normals, because we do not employ an

explicit surface representation. The total force transferred to

a user via the haptic manipulator is F = Fc+Ffr, where Fc

is a coupling force and Ffr is a friction force. If F exceeds

a maximum for a given haptic device then we scale it as to

fit to the device limitations. A calculation of Fc yields

Fc = − d2 − p2
‖d2 − p2‖2

· (‖d2 − p2‖2 · k) = (p2 − d2) · k, (3)

while for Ffr we obtain

Ffr = − p1 − p2
‖p1 − p2‖2

· |Fc · n| · μ · Nbv

w
, (4)

where k is the coefficient of the spring; n – a normal vector,

which is perpendicular to p2-p1 and lies on the plane defined

by vectors p2-p1 and d2-p2; μ – the friction coefficient; Nbv

– number of the border empty-space voxels, which the IP

moved through in the algorithm above at this haptic frame; w
– the total path length at this frame, also from the algorithm

above.

We would like to note that for easier calculations |Fc · n|
could be rewritten as ‖Fc‖2 −

∣∣∣Fc · p1−p2

‖p1−p2‖2

∣∣∣.
We use the given expression for Ffr because at the end of

a haptic frame the IP is moved from p1 to p2, and therefore it

is logical to turn the friction force to the opposite direction.

Also we make it proportional to the part of Fc, which is

perpendicular to p2-p1 in analogy to the normal force for

a dry friction. Finally, we ensure it to be proportional to

Nbv , i.e. the path length that the interaction point actually

slid over a surface. We would like to note that making the

forces related to physical properties of certain materials was

not our goal on this stage of research.

V. IMPLEMENTATION DETAILS

As it was already mentioned before, our interactive VR

system is based on the YaDiV Open-Source platform [1].

The main features include reading of input data in the

DICOM format and offering modules for 2D Visualization,

3D Volume Visualization (2D-Texturing and 3D-Texturing),

3D Segmentation and 3D Segment- Visualization and Regis-

tration. The platform was successfully employed for teaching

and educational purposes and extended by many student

projects. It is also currently used by physicians at Hannover

Medical School (MHH) in various research projects.

Our prototype system is structurally a plug-in for YaDiV.

In order to allow absolute platform independence, YaDiV

was developed using the Java platform. This is the case

for our system, too. Only the device dependent part was

developed using C++. The system is independent from a

haptic display, so that a wide range of devices can be used,

including Phantom Omni, High-end Phantom Premium 1.5

6-DOF and INCA 6D with a very large workspace of approx.

2*1*1.6m (figure 1). The size of the virtual workspace can

be scaled and varies from case to case.

959595

Figure 4. Working with the data set of the head Headbig

VI. RESULTS

For tests real medical tomography data sets were

used, including Torso (520x512x512, fig. 1), Headbig
(464x532x532, fig. 4) and Headsmall (113x256x256, fig. 4).

For the point-object collisions only, the haptic update rate

during the peak load is about 750 kHz on our moderate

high-end user PC (8 x Intel Xeon CPU W5580 @ 3.20GHz,

24 GB RAM, NVIDIA Quadro FX 5800). For the joint

collision detection and response approach the value is about

160-170 kHz. Both values exceed the minimum requirement

for real-time haptics by orders of magnitude. This efficiency

and the conceptual clarity of our approach contrasts most

triangle-based approaches, where millions of triangles would

be generated and complex speeding-up traversing structures

are required for the fast and precise collision detection.

The values were obtained for the virtual haptic device,

which is simulated in Java. For real devices, Java-C++

communication (transferring of the device transformations

and forces) is required. We have measured the timings and

found out that because of these communication costs the

resulting update rate is a little lower – about 150 kHz. The

values for the data sets for the joint collision detection and

response approach are shown in table I. Triangles denotes

number of triangles in the scene for the graphics rendering as

a reference. Triangulation was extracted from the volumetric

data using a modified marching cubes algorithm. Update
Rate is given for real devices and during the peak load.

Our prototype system was tested under Microsoft Win-

dows, as well as under Linux. Under Linux it was also

run using the stereo graphics mode. We found the last one

especially useful for an intuitive interaction with 3D data

comparing to the normal graphics mode.

VII. SUMMARY AND FUTURE WORK

We presented a new haptic rendering approach employing

a novel collision detection technique based on ray casting

concepts known from computer graphics. The method gives

Table I
RESULTING UPDATE RATES

Data Size Triangles Update Rate
Headsmall 113x256x256 690K 152 kHz
Torso 520x512x512 2,222 Mi 138 kHz
Headbig 464x532x532 6,136 Mi 146 kHz

Figure 5. The data set Headsmall

collision detection guarantees that a manipulated object does

not pass through ”thin” obstacles and is never inside any

of them while not requiring any special topological object

structure. The collision detection was extensively tested with

a new ”slide along a surface” approach using an implicit

surface representation ”on the fly”. The results confirm our

approach to be a viable alternative to existing techniques

avoiding most common drawbacks. The prototype was im-

plemented as a plug-in of the YaDiV VR system and tested

on several haptic devices.

Based on the approach presented in this paper, we will

add support for object-object collisions.

We are also looking into the possibility of drastically

speeding up the calculations by employing GPUs. As was

shown e.g. in [51], [55], ray casting could be efficiently

parallelized using GPUs and/or multi-processor systems.

We plan to conduct the tests on the hardware which we

already have at our Institute. It includes the high-end Tesla

cluster granted by NVIDIA in the context of a Professor

Partnership Program, modern graphics hardware including

NVIDIA Fermi (GF 480), multi-core processor systems and

an IBM Cell Cluster.

For the advanced contact resolution we will focus on

Finite-Elements-Models (FEMs). It is also planned to use

FEM-based approaches for simulation of elastic tissues.

Simplified FEMs were used e.g. in [32], [25], [20], but

for those works objects were triangulated compared to our

volumetric data.

The typical use case of our VR system will be assembling

969696

a fractured bone, which is especially important for pre-

operation planning in facial surgery. It is planned that it

will be assessed by physicians from MHH.

ACKNOWLEDGEMENTS

This research is sponsored by a grant provided by

Siemens/DAAD Postgraduate Programme (DAAD - German

Academic Exchange Service). The authors would like to

thank P.Blanke, A.Vais and B.Berger for helpful comments.

REFERENCES

[1] K.-I. Friese, P. Blanke, and F.-E. Wolter, “Yadiv – an open
platform for 3d visualization and 3d segmentation of medical
data,” The Visual Computer, vol. 27, pp. 129–139, 2011.

[2] M. Chen, C. Correa, S. Islam, M. Jones, P.-Y. Shen, D. Silver,
S. J. Walton, and P. J. Willis, “Manipulating, deforming
and animating sampled object representations,” Computer
Graphics Forum, vol. 26(4), pp. 824–852, 2007.

[3] A. Kaufman, D. Cohen, and R. Yagel, “Volume graphics,”
IEEE Computer, vol. 26(7), pp. 51–64, July 2007.

[4] K.-I. Friese, “Entwicklung einer plattform zur 3d-visualisie-
rung und -segmentierung medizinischer daten,” Ph.D. disser-
tation, Leibniz Universitat Hannover, Germany, 2010.

[5] M. Glencross, A. G. Chalmers, M. C. Lin, M. A. Otaduy, and
D. Gutierrez, “Exploiting perception in high-fidelity virtual
environments,” ACM SIGGRAPH 2006 Courses, July 2006.

[6] M. A. Otaduy Tristan, “6-dof haptic rendering using contact
levels of detail and haptic textures,” Ph.D. dissertation, Uni-
versity of North Carolina at Chapel Hill, 2004.

[7] J. E. Colgate, M. C. Stanley, and J. M. Brown, “Issues in the
haptic display of tool use,” Proc. of IEEE/RSJ International
Conf. on Intelligent Robots and Systems, pp. 140–145, 1995.

[8] F. P. Brooks Jr., M. Ouh-Young, J. J. Batter, and P. J.
Kilpatrick, “Project grope - haptic displays for scientific
visualization,” ACM SIGGRAPH Computer Graphics, vol.
24(4), pp. 177–185, August 1990.

[9] Y. Adachi, T. Kumano, and K. Ogino, “Intermediate rep-
resentation for stiff virtual objects,” Virtual Reality Annual
International Symposium, pp. 203–210, 1995.

[10] W. R. Mark, S. C. Randolph, M. Finch, J. M. Van, V. Russell,
and M. Taylor II, “Adding force feedback to graphics systems:
issues and solutions,” Proc. of the 23rd annual conf. on Comp.
graphics and interactive techniques, pp. 447–452, 1996.

[11] C. B. Zilles and J. K. Salisbury, “A constraint-based god-
object method for haptic display,” Proc. of the Int. Conf. on
Intelligent Robots and Systems, vol. 3, pp. 31–46, 1995.

[12] M. Ortega, S. Redon, and S. Coquillart, “A six degree-of-
freedom god-object method for haptic display of rigid bodies
with surface properties,” IEEE Transactions on Visualization
and Computer Graphics, vol. 13(3), pp. 458–469, May 2007.

[13] D. C. Ruspini, K. Kolarov, and O. Khatib, “The haptic display
of complex graphical environments,” Proc. of the 24th ann.
conf. on Comp. gr. and interact. techn., pp. 345–352, 1997.

[14] A. Gregory, A. Mascarenhas, S. Ehmann, M. Lin, and
D. Manocha, “Six degree-of-freedom haptic display of polyg-
onal models,” Proc. of the conf. on Vis.’00, pp. 139–146, 2000.

[15] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy, “Six
degree-of-freedom haptic rendering using voxel sampling,”
Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, pp. 401–408, July 1999.

[16] M. Wan and W. A. McNeely, “Quasi-static approximation
for 6 degrees-of-freedom haptic rendering,” Proc. of the 14th
IEEE Visualization Conference (VIS03), pp. 257–262, 2003.

[17] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy, “Voxel-
based 6-dof haptic rendering improvements,” Journal of
Haptics-e, vol. 3(7), 2006.

[18] J. Barbic and D. James, “Time-critical distributed contact
for 6-dof haptic rendering of adaptively sampled reduced de-
formable models,” Proc. of the ’07 ACM SIGGRAPH/Eurogr.
symp. on Comp. animation, pp. 171–180, 2007.

[19] J. Barbic, “Real-time reduced large-deformation models and
distributed contact for computer graphics and haptics,” Ph.D.
dissertation, Carnegie Mellon University, Pittsburgh, 2007.

[20] J. Barbic and D. L. James, “Six-dof haptic rendering of
contact between geometrically complex reduced deformable
models,” IEEE Trans. on Haptics, vol. 1(1), pp. 39–52, 2008.

[21] M. A. Otaduy, N. Jain, A. Sud, and M. C. Lin, “Haptic display
of interaction between textured models,” Proceedings of the
conference on Visualization ’04, pp. 297–304, October 2004.

[22] M. A. Otaduy and M. C. Lin, “A perceptually-inspired force
model for haptic texture rendering,” Proc. of the 1st Symp.
on App. perception in graphics and vis., pp. 123–126, 2004.

[23] M. A. Otaduy and M. C. Lin, “Stable and responsive six-
degree-of-freedom haptic manipulation using implicit integra-
tion,” Proc. of the 1st Joint Eurohaptics Conf. and Symp. on
Hapt. Interf. for Virt. Env. and Tel. Syst., pp. 247–256, 2005.

[24] M. A. Otaduy and M. C. Lin, “A modular haptic rendering
algorithm for stable and transparent 6-dof manipulation,”
IEEE Trans. on Robotics, vol. 22(4), pp. 751–762, 2006.

[25] M. A. Otaduy and M. Gross, “Transparent rendering of tool
contact with compliant environments,” Proc. of the 2nd Joint
EuroHaptics Conf. and Symp. on Haptic Interfaces for Virt.
Env. and Teleoperator Systems, pp. 225–230, 2007.

[26] N. Galoppo, M. A. Otaduy, S. Tekin, M. Gross, and M. C. Lin,
“Interactive haptic rendering of high-resolution deformable
objects,” Proceedings of the 2nd international conference on
Virtual reality, pp. 215–223, 2007.

[27] C. Garre and M. A. Otaduy, “Haptic rendering of complex
deformations through handle-space force linearization,” In the
Proc. of the World Haptics Conference, pp. 422–427, 2009.

979797

[28] D. E. Johnson and P. Willemsen, “Six degree-of-freedom
haptic rendering of complex polygonal models,” Proc. of the
11th Symp. on Haptic Interfaces for Virtual Environment and
Teleoperator Systems (HAPTICS’03), pp. 229–235, 2003.

[29] D. E. Johnson, P. Willemsen, and E. Cohen, “Six degree-
of-freedom haptic rendering using spatialized normal cone
search,” IEEE Transactions on Visualization and Computer
Graphics, vol. 11(6), pp. 661–670, November 2005.

[30] R. Weller and G. Zachmann, “A unified approach for
physically-based simulations and haptic rendering,” Proceed-
ings of the 2009 ACM SIGGRAPH Symposium on Video
Games, pp. 151–160, August 2009.

[31] C. Duriez, C. Andriot, and A. Kheddar, “Signorini’s con-
tact model for deformable objects in haptic simulations,”
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) 2004, pp. 32–37, 2004.

[32] C. Duriez, F. Dubois, A. Kheddar, and C. Andriot, “Realistic
haptic rendering of interacting deformable objects in virtual
environments,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 12(1), pp. 36–47, January 2006.

[33] G. Debunne, M. Desbrun, M.-P. Cani, and A. H. Barr, “Dy-
namic real-time deformations using space & time adaptive
sampling,” Proc. of the 28th annual conference on Computer
graphics and interactive techniques, pp. 31–36, 2001.

[34] Y. Kuroda, M. Nakao, S. Hacker, T. Kuroda, H. Oyama,
M. Komori, T. Matsuda, and T. Takahashi, “Haptic force
feedback with an interaction model between multiple de-
formable objects for surgical simulations,” Proceedings of
Eurohaptics2002, pp. 116–121, July 2002.

[35] C. Basdogan, S. De, J. Kim, M. Muniyandi, H. Kim, and
M. A. Srinivasan, “Haptics in minimally invasive surgical
simulation and training,” IEEE Computer Graphics and Ap-
plications, vol. 24(2), pp. 56–64, March 2004.

[36] S. De, Y.-J. Lim, M. Manivannan, and M. A. Srinivasan,
“Physically realistic virtual surgery using the point-associated
finite field (paff) approach,” Presence: Teleoperators and
Virtual Environments, vol. 15(3), pp. 294–308, June 2006.

[37] A. Maciel, T. Halic, Z. Lu, L. P. Nedel, and S. De, “Using
the physx engine for physics-based virtual surgery with force
feedback,” In Int. Journal of Medical Robotics and Computer
Assisted Surgery, vol. 5(3), pp. 341–353, September 2009.

[38] C. J. Luciano, P. Banerjee, and S. H. R. Rizzi, “Gpu-
based elastic-object deformation for enhancement of existing
haptic applications,” Proc. of the 3rd Annual IEEE Conf. on
Automation Science and Engineering, pp. 146–151, 2007.

[39] Y.-H. Chang, Y.-T. Chen, C.-W. Chang, and C.-L. Lin,
“Development scheme of haptic-based system for interactive
deformable simulation,” Computer-Aided Design, vol. 42(5),
pp. 414–424, May 2010.

[40] F. Vidal, N. John, A. Healey, and D. Gould, “Simulation of
ultrasound guided needle puncture using patient specific data
with 3d textures and volume haptics,” Journal of Visualization
and Computer Animation, vol. 19, pp. 111–127, 2008.

[41] K. Palmerius and G. Baravdish, “Higher precision in volume
haptics through subdivision of proxy movements,” Proc. of
EuroHaptics ’08, pp. 694–699, 2008.

[42] L. Kim, A. Kyrikou, M. Desbrun, and G. Sukhatme, “An
implicit-based haptic rendering technique,” In Proc. of the
IEEE/RSJ International Conf. on Intelligent Robots, 2002.

[43] S. Chan, F. Conti, N. Blevins, and K. Salisbury, “Constraint-
based six degree-of-freedom haptic rendering of volume-
embedded isosurfaces,” W. Hapt. Conf.’11, pp. 89–94, 2011.

[44] L. Corenthy, J. S. Martin, M. Otaduy, and M. Garcia, “Vol-
ume haptic rendering with dynamically extracted isosurface,”
Proceedings of Haptics Symposium 2012, pp. 133–139, 2012.

[45] G. Boettcher, Haptic Interaction with Deformable Objects.
Springer, 2011.

[46] G. Boettcher, D. Allerkamp, D. Gloeckner, and F.-E. Wolter,
“Haptic two-finger contact with textiles,” Visual Computer,
vol. 24, no. 10, pp. 911–922, September 2008.

[47] D. Allerkamp, G. Boettcher, F.-E. Wolter, A. C. Brady,
J. Qu, and I. R. Summers, “A vibrotactile approach to tactile
rendering,” Visual Computer, vol. 23, no. 2, pp. 97–108, 2007.

[48] D. Allerkamp, Tactile Perception of Textiles in a Virtual-
Reality System. Springer, 2011.

[49] G. Boettcher, D. Allerkamp, and F.-E. Wolter, “Multi-rate
coupling of physical simulations for haptic interaction with
deformable objects,” Visual Computer, vol. 26, no. 6-8, pp.
903–914, January 2010.

[50] M. Hadwiger, P. Ljung, C. R. Salama, and T. Ropinski,
“Advanced illumination techniques for gpu-based volume
raycasting,” ACM SIGGRAPH 2009 Courses, 2009.

[51] J. Kruger and R. Westermann, “Acceleration techniques for
gpu-based volume rendering,” Proceedings of the 14th IEEE
Visualization 2003 (VIS’03), pp. 287–292, October 2003.

[52] M. Levoy, “Efficient ray tracing of volume data,” ACM
Transactions on Graphics, vol. 9(3), pp. 245–261, July 1990.

[53] J. Mensmann, T. Ropinski, and K. Hinrichs, “Accelerating
volume raycasting using occlusion frustums,” In IEEE/EG Int.
Symp. on Vol. and Point-Based Graphics, pp. 147–154, 2008.

[54] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. R.
Salama, and D. Weiskopf, “Real-time volume graphics,” ACM
SIGGRAPH 2004 Course Notes, 2004.

[55] T. Ropinski, J. Kasten, and K. H. Hinrichs, “Efficient shadows
for gpu-based volume raycasting,” Proc. of the 16th Int. Conf.
in Central Europe on Computer Graphics, Visualization and
Computer Vision (WSCG08), pp. 17–24, 2008.

[56] N. Max, “Optical models for direct volume rendering,” IEEE
Tr. on Vis. and Comp. Graphics, vol. 1(2), pp. 99–108, 1995.

[57] R. Vlasov, K.-I. Friese, and F.-E. Wolter, “Ray casting for
collision detection in haptic rendering of volume data,” I3D
’12 Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, p. 215, March 2012.

989898

