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Abstract. In this paper we present a novel haptic rendering method
for exploration of volumetric data. It addresses a recurring flaw in al-
most all related approaches, where the manipulated object, when moved
too quickly, can go through or inside an obstacle. Additionally, either a
specific topological structure for the collision objects is needed, or extra
speed-up data structures should be prepared. These issues could make
it difficult to use a method in practice. Our approach was designed to
be free of such drawbacks. An improved version of the method presented
here does not have the issues of the original method – oscillations of the
interaction point and wrong friction force in some cases. It uses the ray
casting technique for collision detection and a path finding approach for
rigid collision response. The method operates directly on voxel data and
does not use any precalculated structures, but uses an implicit surface
representation being generated on the fly. This means that a virtual scene
may be both dynamic or static. Additionally, the presented approach has
a nearly constant time complexity independent of data resolution.

Keywords: haptics, haptic rendering, collision detection, collision re-
sponse, collision resolution, ray casting, implicit surface, path finding.

1 Introduction

Nowadays 3D data processing and visualization, especially medical imaging, are
widely used for analysis, diagnosis, illustration and other purposes, such as neu-
rosurgery planning and reconstruction of volumetric data from Magnetic Reso-
nance Imaging (MRI) and industrial CT (Computed Tomography).

When one works with 3D data, it is not very natural to navigate and manip-
ulate it using a standard computer mouse and keyboard. A more intuitive way
would be to use a device with more Degrees-of-Freedom (DoF). Several haptic
devices fulfill this purpose, additionally providing an additional channel of in-
teraction: feeling the objects – a user can both manipulate a virtual object and
feel force feedback reactions. Since 3D data is widely used not only in medicine
but in many different areas, such as CAD-applications, entertainment, museum
display, sculpting, geology, military applications, various scientific applications
and others, haptic devices could be also useful in these fields. Additionally, user
studies were performed showing that a training with haptic devices gives better
results than a training without them [1, 2].
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There exist many different surface- and voxel-based haptic rendering methods,
and almost all of them give no collision detection guarantees and/or require a
special topology and/or precalculations, which is not acceptable for such precise
procedures as pre-operation planning in surgery. Additionally, in practice the
real medical data we work with can have any structure if segmentation has
been done automatically. In order not to have the aforementioned issues, we
propose our haptic rendering approach. The approach is an improved version of
the method presented in [3], addressing the following issues: sometimes there are
oscillations of the interaction point (IP) around the locally closest surface point
to the current position of the device manipulator, and the direction of the friction
force could be incorrect in the case of multiple obstacles or a complex surface.
Our improved method uses the ray casting technique for collision detection and a
local path finding approach for rigid collision response. As in the original method,
the improved approach has been implemented within the bounds of the YaDiV
platform [4] – a virtual system for working with high-quality visualization of
3D volumetric data. For a moderate end-user PC, up to 750 points could be
simulated at about 1 kHz for collision detection without collision response, and
up to 145 points for the collision detection and collision response.

2 Definitions

2.1 Volumetric Data

Generally, 3D data could be in different representations (triangulated surface,
hexahedrons, volumetric, ...). Here we focus on a volumetric one, since it is a
direct output from the scanning devices. Other data types could be transformed
to this one, if necessary.

Volume data, also called volumetric data, is a data set consisting of pairs
< coordinates, intensity value >, where the intensity value is a scalar measured
by a scanning device (e.g. the value of unabsorbed X-rays) [5]. One can take a
look for a detailed description of volumetric data and related terms in [6].

Since scanned data has no color or tissue information, a segmentation step
of the data could be further needed. That is, if explicit segmentation algorithms
are used, a tag is applied to each voxel. This tag indicates whether the voxel
belongs to a certain structure (e.g. to kidneys or bones) or not. We use a bit
cube representation of segments for this (see [7]). The development of segmen-
tation processes is a large field of research, and different approaches for different
purposes have already been proposed (see e.g. [5] and [7] for an overview and
suggested methods). Further we assume that the 3D volumetric data is already
segmented, i.e. that a set of segments (a set of scene objects) is provided.

2.2 Haptics

The term haptic (originating from the Greek haptesthai, meaning ”to touch”)
is an adjective used to describe something relating to or based on the sense of
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touch. The word ”haptic” is in relation to the word ”touching” as ”visual” is to
”seeing” and as ”auditory” is to ”hearing”.

Below are the definitions being used in the rest of this work.

Definition 1. A haptic device (or a haptic display) is capable of tracking
its own position and/or orientation and stimulates the kinesthetic sense of the
user via a programmable force feedback system.

Definition 2. A probe (or end-effector) (of a haptic display) is the part
of the device for which the position/orientation is tracked (passive DoF) and to
which a force feedback is applied (active DoF).

Definition 3. A tool (in a virtual world) is an object in a virtual world the
user manipulates via the probe. A particular case is the (haptic) interaction
point (if the object is a 3D point).

Definition 4. A handle (in a virtual world) is a grasped part of the tool.

Fig. 1. Haptic rendering of the data set Headbig using the INCA 6D device

3 Related Work

We would like to start with a description of a haptic rendering pipeline. Generally
it has three stages as shown in Fig. 2. All stages are often tightly integrated in
order to effectively use a solution of one task for solving others.

To communicate with the haptic device, there exist two ways:

– admittance control scheme: a user applies a force to the manipulator of the
device, and the application program sends a command to the hardware to
move the manipulator according to the simulation

– impedance control scheme: a user moves the manipulator, and the applica-
tion program calculates forces and applies them to the manipulator. This
scheme is shown in Fig. 2 and is usually used nowadays (see [8, 9]). It is also
assumed in our work.
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Fig. 2. Haptic rendering pipeline for the impedance control scheme

Colgate et al. showed in [10] that in order to have high quality haptic rendering
it is important to compute feedback forces at a high update rate. According to
Brooks et al. [11] it should be at least 0.5-1 kHz.

Remark 1. A force update rate of 1 kHz is generally not sufficient for stable
haptic rendering. This means that other issues, such as too fast object movement
or too strong forces, should be addressed in the system.

Further on, there exist two main techniques for dealing with the manipulation
of the handle. The aim of both of them is to provide the user with stable haptic
rendering. The techniques are:

– direct rendering: apply manipulations with the haptic probe directly to the
handle

– virtual coupling (first proposed by Colgate et al. [10]): connect the haptic
probe to the handle through a virtual spring-damper connection.

Each technique is suitable for a certain case. The direct rendering is good if all
the stages of the haptic rendering pipeline can perform at 1 kHz (an update
rate sufficient for a stable user interaction). The virtual coupling is good in the
remaining cases, e.g. for multirate approaches, when force feedback is generated
at 1 kHz, but physics simulation runs at, say, at 30 Hz.

There are different haptic rendering approaches, for which in the following we
will give an overview by groups.

We start with rigid-rigid methods, i.e. for which the tool and all objects
in the virtual world are rigid. Adachi et al. [12] and Mark et al. [13] were the
first to propose an intermediate representation of the virtual environment. Zilles
and Salisbury [14] proposed a god-object non-penetration approach for 3-DoF.
Later the aforementioned approach was extended to 6-DoF by Ortega et al.
[15]. An extension of the god-object idea in 3-DoF is a concept called ”virtual
proxy” [16]. At each frame, the position of the probe in the virtual environment
is set as a goal for the tool. Then possible constraint surfaces are identified using
the ray between the old position of the virtual proxy (the tool) and the goal
position. After that a quadratic optimization problem is solved and a subgoal
position is found. This process is repeated until the subgoal position could not
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be closer to the goal. An extended 6-DoF technique of virtual proxy was used
in [17]. McNeely et al. [18] developed a 6-DoF haptic rendering method for the
Boeing Company. They proposed to use a voxmap (spatial occupancy map) and
object pointshells. Volumetric data and penalty pre-contact forces were used.
Later this approach was significantly improved in the next works of McNeely
and others [19] and [20]. A completely different haptic rendering approach was
suggested by Otaduy, Lin et al. [21, 22]. Their method allows haptic rendering
of interaction between ”haptically textured” triangulated models (with fine sur-
face details stored as a height field). Collision detection between low-resolution
meshes is based on sensation-preserving contact levels of detail from [23, 24].
Another interesting approach was suggested by Johnson and Willemsen [25, 26].
They used spatialized normal cone hierarchies for fast collision detection between
the tool and an environmental object. Weller and Zachmann [27] presented inner
sphere trees – a structure which bounds an object from inside with a set of non-
overlapping bounding volumes – and employed it for haptic rendering. Vidal et
al. [28] made a simulation of ultrasound guided needle puncture and proposed a
proxy-based surface/volume haptic rendering for that. Palmerius et al. [29] have
shown in their work how subdivision of proxy movements can improve precision
of volume haptic rendering. Kim and others [30] presented a method that uses
implicit surface representations and requires some preprocessing and a certain
topology. An approach devoted to haptic rendering of volume-embedded isosur-
faces was suggested by Chan et al. [31]. Another haptic rendering method, which
uses isosurfaces defined by interpolating on tetrahedral meshes, was recently pro-
posed by Corenthy et al. [32].

Another group consists of rigid-defo methods, i.e. for which the tool is rigid
and the environment is deformable. The following methods could be marked out.
Debunne et al. [33] presented a method for animating dynamic deformations of
a visco-elastic object with a guaranteed frame-rate, built into a 6-DoF hap-
tic rendering framework. An object is represented via a tetrahedral mesh, and
the proposed physical simulation approach belongs to the domain of physics-
based continuous models. Basing on [19], Barbic et al. [34, 35] proposed their
own approach, which supports contact between rigid and reduced deformable
models, both with complex geometry. A distributed contact between objects is
allowed, i.e. an interaction with potentially several simultaneous contact sites. A
pointshell-based hierarchical representation was used for the deformable object
and a signed-distance field for the rest of the scene. Kuroda et al. [36] presented a
simulation framework, where the manipulating point pushes a deformable object,
which is in contact with another one. A work of Basdogan et al. [37] is devoted
to 6-DoF haptics in minimally invasive surgical simulation and training. One
more method for a ”physically realistic” virtual surgery was suggested by De
et al. [38]. They used the Point-Associated Finite Field (PAFF) approach. The
idea is to discretize the computational domain (e.g. an organ) using a scattered
set of points (”nodes”) with spherical influence zone and defined a nodal shape
function for it. In [39] Otaduy and Gross represented environmental deformable
objects by tetrahedral meshes, In [40], a layered representation of objects is
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employed: a low-resolution mesh for the collision detection and haptic interac-
tion, a deformable tetrahedral mesh for deformation computations and a detailed
surface mesh for the deformable skin simulation. Luciano et al. [41] devoted their
work to a local elastic point-based deformation around a contact point in 3-DoF
haptic rendering. Ikits et al. [42] presented a 3-DoF constraint-based technique
for haptic volume exploration. Chang et al. [43] proposed a 6-DoF haptic ren-
dering method using the mass-spring simulation model.

For the defo-defo methods, i.e. for methods for which tool and environment
are both deformable, the following methods should be noted. In the later work of
Barbic et al. [44] the distance field was made parametrically deformable. In [45]
Garre and Otaduy proposed haptic rendering of complex deformations through
handle space force linearization. Duriez et al. [46] proposed a method using Sig-
norini’s contact model for deformable objects in haptic simulations with a focus
on contact response. It belongs to approaches with non-penetration constraints
and is independent from a collision/proximity detection. In the later work [47]
the authors incorporated friction into the simulation model. Maciel et al. [48]
also presented a haptic rendering method for physics-based virtual surgery by
using NVIDIA’s PhysX physics library, which is GPU accelerated. The latter
method supports 6-DoF. Peterlik et al. [49] suggested an asynchronous approach
for haptic rendering of deformable objects. In [50, 51, 52] Boettcher et al. sug-
gested a kinesthetic haptic rendering of virtual fabrics grasped by two fingers
(the HAPTEX project [53, 54, 55]). The fingers are represented by spherical
tools manipulated via two 3-DoF probes. The simulation of tactile perception of
the fabrics was proposed by Allerkamp et al. [56, 57]. The VR system developed
in the HAPTEX project was the first one and until today still appears to be the
only one offering (simultaneously) an integration of combined haptic and tactile
perception, cf. [50, 51, 52, 53, 54, 55, 56, 57]. The exact physical properties of
fabrics were simulated in the system, see [58]. Later on, in [59] Boettcher et al.
described a generalized multi-rate coupling scheme of physical simulations for
haptic interaction with deformable objects.

As was stated in the introduction, the motivation for our approach was that
almost all methods referenced above can not give collision detection and non-
penetration guarantees, as well as require a pre-specified topological structure of
objects. We would like to provide the user with a method, which does not have
these drawbacks.

4 Our Method

4.1 Collision Detection

The collision detection in our haptic rendering pipeline employs the ray casting
technique (see e.g. [60, 61, 62, 63, 64, 65]), which has its roots in computer
graphics. A short description was given in our work [66], and in this subsection
we present it in more detail.

The idea of ray casting in visualization is to numerically evaluate the volume
rendering integral in a straightforward manner. According to [67], the rendering



218 R. Vlasov, K.-I. Friese, and F.-E. Wolter

integral Iλ(x, r), i.e. the amount of the light of wavelength λ coming from a ray
direction r that is received at location x on the image plane, is:

Iλ(x, r) =

L∫

0

Cλ(s)μ(s)e
−

s∫

0

μ(t)dt
ds, (1)

where L – the length of the ray r; μ – absorption (extinction) coefficient at the
specified position on the ray r; Cλ – amount of the light of wavelength λ emitted
at the specified position on the ray r.

From the algorithmic point of view, ray casting in visualization works as
follows: for each pixel of the image a ray is cast into the scene. Along the
cast ray the intensity values of the volumetric data are resampled at equidis-
tant intervals, usually using trilinear interpolation. After the resampling an
approximation of the volume rendering integral along the ray in either back-
to-front or front-to-back order is computed. In this process the mapping of the
< coordinates, scalar value > pairs for the resampled points to colors and opac-
ities according to a previously chosen transfer function is used.

In haptic rendering, for the collision detection of the interaction point (IP)
following the position of the manipulator, we perform ray casting from its last
position to the current one – Fig. 3(a). In more detail, we are going along the
ray with 1-voxel steps – Fig. 3(b). If the value of any bit cube representing an
obstacle at the sampled point is true – Fig. 3(c), – then a collision information
and true is returned by the collision detection procedure – Fig. 3(d). False is
returned otherwise. We use 1-voxel steps, because a minimum possible thickness
of an object is also one voxel. By performing the ray casting we can always find
the exact collision, if it happened between the haptic rendering updates, and
react to it accordingly. To our best knowledge, there exists only one method (see
[15]), which provides the same collision detection guarantees as ours, but it only
works with triangulated objects and not with volumetric / voxel based data.

In case a higher precision for the collision detection is needed, ray casting at
sub-voxel resolution or sampling once between each pair of consecutive intersec-
tions of the ray and a grid plane could be used. In our experiments, we found
that 1-voxel step is sufficient for our data though.

In order to speed up computations further, a dynamic list of objects being
determined as collision candidates is updated at each haptic frame. For that, we
check if the ray from the last position of the IP to the current one collides with
the Axis-Aligned-Bounding-Box (AABB) of each object. If so, then the object
is a candidate. The detailed collision detection is performed for the collision
candidates only. Furthermore, we put a reasonable upper limit on the maximal
movement of the IP between two haptic frames. This allows to perform localized
and therefore faster ray casting using the cached information from the previous
frame and avoid possible haptic rendering instabilities (the last technique is also
used in [35]).
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(a) (b)

(c) (d)

Fig. 3. The ray from the previous position p1 to the current one p2 is cast with 1-voxel
steps until an obstacle is found or p2 is reached

The time complexity of the method is

O

(
Nobj

wmax

step

)
, (2)

where Nobj – number of objects in the scene; wmax – maximum path length per
frame, in voxels; step – the sampling step of ray casting (chosen as 1).
Indeed, in the worst case all objects in the scene could become the collision
candidates and be checked all the way from the previous position of the IP to
the current one.

4.2 Collision Response

The original version of our joint collision detection and response stage of the
haptic rendering pipeline was proposed in our work [3]. Here we present its im-
proved version, which uses the path-finding approach combined with the god
object/proxy paradigm. It works directly with volumetric data and has no limi-
tations. The idea of the original method from [3] was as follows.

Because of the collision detection and non-penetration guarantees the IP should
not go inside any object or pass through it. Therefore we made it slide over the sur-
face. The surface is calculated locally ”on the fly”. The IP can encounter multiple
surfaces on its way. It is connected with the actual position of the device’s manipu-
lator via a virtual spring. The approach was made to test the capacities and speed
of our collision detection method and as a base for further experiments.
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The position of the IP from the last frame is denoted as p1, and the position
to be calculated – as p2. For the device’s manipulator, we denote its last position
as d1 and the current one as d2. The IP always moves in the direction of d2.
Empty-space border voxels below are the voxels which are empty but have at
least one non-empty N26-neighbour (two voxels are N26-neighbours if the first
one is orthogonally or diagonally adjacent to the second one, also see [7]).

In more detail, the method is the following:

1. p2 := p1
2. Do the collision test from p2 to d2. If there is no collision then p2 := d2

and exit. Else move p2 towards the collision point pcol, so that the distance
between p2 and pcol is less than the predefined ε < 1

3. While p2 �= d2 and the total path length of the IP at this haptic frame
has not exceeded wmax (see section 4.1) and it is not shorter just to move
directly from p2 to d2 do:
(a) Locate empty-space border voxels neighbouring to p2
(b) Select a voxel with the maximal dot product (voxel-p2, d2-p2) > 0. If

there is no such voxel then go to step 4
(c) Move p2 to this voxel. If p2 is inside another object after this movement

then cancel the movement and go to step 4
(d) go to step 3

4. If the path length of the IP at this haptic frame ≤ wmax and p2 �= d2 and
p2 �= the value of p2 at the beginning of step 2, then go to step 2. Else exit.

Remark 2. There are some additional checks and minor details, which we omit-
ted in the above description for clarity. A complete listing of the algorithm can
be found in [3].

An example of how the method works is shown in Fig. 4. After the initialization
at step 1, Fig. 4(a), the collision test is performed at step 2, Fig. 4(b). There
is a collision, so the ”sliding along the surface” part of the algorithm – step 3
– is executed, Fig. 4(c). Then the conditions for the outer loop (steps 2-4) are
checked at step 4. As long as they are fulfilled, step 2, Fig. 4(d), and step 3,
Fig. 4(e), are executed again. At step 4 these conditions are met again, therefore
the method starts the third iteration of the outer loop. But the IP cannot come
closer to d2 this time, so nothing is changed, and the algorithm stops at step 4.

We have found out that the use of the dot product of the vectors at step 3b
in order to find the next voxel to move to sometimes leads to an issue, namely
that the IP oscillates around the point being locally the closest surface point to
d2 (lets denote it as p′2). This oscillation could happen because of the following.
If there is always a next voxel on the surface, to where the IP can move in the
direction of d2-p1 according to the conditions at step 3b, the IP may pass p′2
and go further. This could happen because the IP will move until its total path
length at this haptic frame is less than wmax and because wmax may be not
exceeded at p′2. If d2 remains unchanged at the next haptic frame then the IP
will go the way back and will also pass p′2 backwards direction and go further
because of the same reason. At the next haptic frame the IP will go in the same
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(a) (b)

(c) (d)

(e)

Fig. 4. Example of execution of the original ”sliding along the surface” approach

direction as at the first haptic frame and will pass p′2 again. These oscillations
may continue until the position of the probe is changed.

In order to eliminate this drawback, we suggest to replace the use of the dot
product at step 3b with the search for the voxel with the smallest distance to
d2. In other words, we suggested to use a path finding algorithm looking for a
locally optimal path to d2 for the given metric and limitations. Our improved
method still deals with different obstacles at the same time and looks as follows:
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1: Get p1, d1, d2
2: p2 := p1 // Initialize p2
3: Set p2last to be unequal to p2
4: w := 0 // Path length travelled by the IP at this frame
5: while (p2 �=d2 and w < wmax and p2last �=p2) do
6: p2last := p2
7: Make the collision test from p2 to d2
8: if (no collision) then
9: Move p2 towards d2 for the distance min(||d2-p2||2 , wmax − w)

10: w := w + (the above movement of p2)
11: break
12: else
13: Move p2 towards the collision point pcol so that it is at the given ε < 1

before pcol, or for the distance (wmax − w) from p2 in case the last is
shorter

14: w := w + (the above movement of p2)
15: // Find a path to d2 along the obstacle’s surface, so that
16: // the path is locally optimal at each step:
17: while w < wmax and p2 �=d2 do
18: // Is it shorter just to move from p2 towards d2
19: // without following the surface?
20: if (p2 will not be inside any obstacle if moved by 1 voxel towards d2)

then
21: // We will move directly to d2 at the beginning
22: // of the next iteration of the outer loop
23: break
24: end if
25: Locate neighbour empty-sp. border voxels for p2
26: dist sq := ∞
27: Select a voxel with the smallest square distance to d2, and remember

this distance as dist sq
28: if (dist sq = ∞) then
29: break
30: end if
31: Move p2 towards the selected voxel for the distance min(||voxel-p2||2 ,

wmax − w)
32: if (p2 is inside another obstacle) then
33: Cancel the above movement of p2
34: break
35: end if
36: w := w + (the above movement of p2)
37: end while
38: end if
39: end while
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Note 1. Here and further in this work we assume that the empty-space border
voxels are not precalculated. If they are precalculated for each segment at the
preprocessing step then it will give 25% speed-up.

Additionally, we would like to note, that we still use the ideas from the original
approach combined with the one presented here in order to add mass to the IP.
This work is in progress.

4.3 Force Feedback

We improved our force feedback generation comparing to the one in [3]. This
was necessary because the direction of the friction force Ffr could be wrong in
the case of multiple obstacles or a complex surface, since we used the direction
of p2-p1. Additionally, in the formula for Ffr we used wbv, the path length which
the IP travelled through empty-space border voxels, instead of the number of
those empty-space border voxels. This was done, since the IP could move less
than one voxel in the inner loop of the algorithm above.

We do not use surface normals, because we do not employ an explicit surface
representation. The total force transferred to a user via the haptic manipulator
is F = Fc + Ffr, where Fc is a coupling force. If F exceeds a maximum for a
given haptic device then we scale it as to fit to the device limitations. We define
Fc as

Fc = − d2 − p2
‖d2 − p2‖2

(k‖d2 − p2‖2
) = k(p2 − d2), (3)

where k is the coefficient of the spring.
For Ffr the updated expression could be written as

Ffr = −μ
vbv

‖vbv‖2

|Fc · n|wbv

w
, (4)

where μ is the friction coefficient; vbv =
∑

i vi, and vi are linear path segments
being travelled by the IP through the empty-space border voxels at this haptic
frame; n – a normal vector being perpendicular to vbv and located on the plane
spanned by vbv and d2-p2; wbv – the length of the path where (during this haptic
frame) the IP travelled through the empty-space border voxels in the algorithm
described above; w – the total of the path covered by the IP during this frame
according to the algorithm described above.

For easier calculations |Fc · n| could be rewritten as ‖Fc‖2
−
∣∣∣Fc · vbv

‖vbv‖2

∣∣∣.
We suggest the new formula for Ffr as opposed to [3] because at the end of a

haptic frame the IP is moved from p1 to p2, so it is logical to turn Ffr into the
direction of the normalized vector given by the average obtained (via their sum)
from all path segments, where the IP travelled along a surface. Additionally, we
ensure Ffr to be proportional to the part of Fc which is perpendicular to vbv in
analogy to the normal force for a dry friction, Finally, we make it proportional
to wbv, i.e. the path length that the IP actually slid over a surface. We would like
to note that making the forces related to physical properties of certain materials
was not our goal on this stage of research.
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5 Implementation

5.1 Prototype System

We developed our interactive VR system as a plug-in for the YaDiV Open-Source
platform [4]. YaDiV is used for teaching and in various research projects, and
was developed in Java. The last is the case for our system, too. Only the device
dependent part was developed using C++, because there are no device APIs on
Java being supported by the devices manufacturers. Our system is independent
from a haptic display, so that a wide range of devices can be used, including
Phantom Omni, High-end Phantom Premium 1.5 6-DOF and INCA 6D with
a very large workspace of approx. 2x1x1.6m (Fig. 1). The size of the virtual
workspace can be scaled and varies from case to case.

Since Java is executed on a Virtual Machine (VM), we experienced indeter-
ministic delays from a few milliseconds to tens of milliseconds from time to time
during the run of the haptic system. This a is serious drawback, since the hap-
tic update rate should constantly be at least 1 kHz. We conducted experiments
and found out that the delays appear even with the simplest Java application.
The authors of [68], [69] wrote that a real-time VM can provide a deterministic
execution time, i.e. to eliminate the aforementioned issue. We conducted exper-
iments with two common real-time VMs: Sun JavaRTS and IBM Web Sphere
Real Time. We followed all recommendations of the developers, like installation
of Linux with a real-time core and fine tuning of the VM. As a result, we found
out that there are still delays of 1-3 ms. We would like to point out that the
observed results differ from the information stated in [68] and [69], which was
officially presented by IBM and Sun respectively.

5.2 Synchronization Issues

The graphical representation of objects in YaDiV is re-rendered upon request.
That is, when properties (color, position, ...) of a scene object are changed, the
scene is redrawn. Together with haptic interaction, this rendering scheme leads
to synchronization problems. If we would change graphics properties directly
in the haptic thread, then every change in the properties would cause a new
redraw event, creating unacceptable delays of tens of ms during the execution of
the haptic thread.

In order to deal with the aforementioned issues, we proposed to use special ob-
jects in the haptic thread, which accumulate changes of the graphics properties,
and apply them to the corresponding YaDiV entities in a dedicated synchroniza-
tion thread. In other words, these accumulating objects wrap all object properties
which could cause re-rendering. An access to them is made using synchronized
Java-statements. In case a wrapped property was changed, a corresponding ac-
cumulating object is added to the list of objects which should be synchronized.
The synchronization thread performs a synchronization with the corresponding
entities of the graphics thread at about 30 Hz by going through this list.
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6 Results

Using the improved method, we repeated the tests as stated in [3]. Since we im-
proved our method, it was necessary to perform the tests again. We used the same
real tomography data sets as in our last work, including Torso (520x512x512,
Fig. 5), Headbig (464x532x532, Fig. 1) and Headsmall (113x256x256, Fig. 6).

The point-object collisions mode with no collision response remained un-
changed, therefore the haptic update rate did not change and is about 750 kHz
during the peak load on our moderate high-end user PC (8 x Intel Xeon CPU
W5580 @ 3.20GHz, 24 GB RAM, NVIDIA Quadro FX 5800). For our improved
joint collision detection and response approach the value is about 140-150 kHz.
Both values still exceed the minimum requirement for real-time haptics by or-
ders of magnitude. The values were obtained for the virtual haptic device, which
is simulated in Java. For real devices, the resulting update rate is a little lower
– about 135 kHz. We have measured the timings of each step and found out
that the update rate is lower because of the required Java-C++ communication
(transferring of the device transformations and forces), since the haptic device
dependent part was developed using C++ (see section 5). All values for the data
sets for the joint collision detection and response approach are shown in table 1.
Triangles denotes the number of triangles in the scene for the graphics rendering
as a reference. The triangulation was extracted from the volumetric data using
a modified marching cubes algorithm. Update Rate is given for real devices and
during the peak load.

Additionally, we would like to mention that the users of our prototype system
with the improved haptic component reported about a better and more natural
haptic experience. The system was tested under Microsoft Windows and Linux.
Under Linux it was also run using the stereo graphics mode. The users found the
last one especially useful for an intuitive interaction with 3D data comparing to
the normal graphics mode.

Fig. 5. Working with the Torso data set
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Fig. 6. The data set Headsmall

Table 1. Resulting update rates

Data Size Triangles Update Rate

Headsmall 113x256x256 690K 146 kHz

Torso 520x512x512 2,222 Mi 134 kHz

Headbig 464x532x532 6,136 Mi 141 kHz

7 Summary and Future Work

In this work we presented an improved version of our haptic rendering approach
originally proposed in [3]. The improved approach has all properties of the orig-
inal method (including an implicit surface representation ”on the fly”) and does
not have the drawbacks described in section 4. The method employs local path
finding and ray casting concepts and gives collision detection guarantees that a
manipulated object does not pass through ”thin” obstacles and is never inside
any of them while not requiring any special topological object structure. Ad-
ditionally, we presented an improved force feedback generation scheme, which
does not suffer issues of the original scheme given in [3]. The results show that
our approach is a good alternative to existing techniques, while avoiding most
common drawbacks. Furthermore, it contrasts most triangle-based approaches,
where millions of triangles would be generated and complex speeding-up travers-
ing structures are required for the collision detection with the same guarantees.
The prototype was implemented as a plug-in of the YaDiV system and supports
different haptic devices and operation systems.

Our work shows that the path finding paradigm could be successfully em-
ployed in other research areas, such as haptic rendering in our case.

As an ongoing research, we plan to introduce object-object interactions, where
the controlled object is represented as a set of points, and implement the colli-
sion detection stage on GPUs, since ray casting could be efficiently parallelized
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(see e.g. [61], [65]). This will allow us to make computations faster and there-
fore represent the controlled object with more points and/or perform a more
sophisticated collision response. For the latter case, we plan to use FEM-based
approaches for simulation of elastic deformations, as e.g. in [47], [39], [44], but we
will work directly with volumetric data. The practical use cases of our VR system
could be assembling a fractured bone being an important step for pre-operation
planning in facial surgery, putting landmarks for automatic segmentation and
registration methods and correction of the results of automatic approaches. For
that, it is planned to make an assessment of our VR system by physicians from
Hanover Medical School (MHH).
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