
Geometric Modeling for Engineering Applications

Franz-Erich Wolter, Martin Reuter, Niklas Peinecke

Herausgeber:

Gottfried Wilhelm Leibniz Universität Hannover

Institut für Mensch-Maschine-Kommunikation

Lehrstuhl Graphische Datenverarbeitung

Prof. Dr. Franz-Erich Wolter

August 2009

ISSN 1866-7996

Welfenlab

Institut für Mensch-Maschine-Kommunikation

Welfen Laboratory Report No.6

This preprint was published as

Franz-Erich Wolter, Martin Reuter, Niklas Peinecke
”Geometric Modeling for Engineering Applications”
in Encyclopedia of Computational Mechanics. Part 1: Fundamentals. E. Stein, R.
de Borst & T.J.R. Hughes (eds.), John Wiley & Sons, 2007.

Abstract

A geometric model of an object – in most cases being a subset of the three dimen-
sional space – can be used to better understand the object’s structure or behavior.
Therefore data such as the geometry, the topology and other application specific
data have to be represented by the model. With the help of a computer it is pos-
sible to manipulate, process or display these data.
We will discuss different approaches for representing such an object: Volume based
representations describe the object in a direct way, whereas boundary representa-
tions describe the object indirectly by specifying its boundary. A variety of different
surface patches can be used to model the object’s boundary. For many applications
it is sufficient to know only the boundary of an object.
For special objects explicit or implicit mathematical representations can easily be
given. An explicit representation is a map from a known parameter space for in-
stance the unit cube to 3D-space. Implicit representations are equations or relations
such as the set of zeros of a functional with three unknowns. These can be very
efficient in special cases.
As an example of volume based representations we will give a brief overview of the
voxel representation. We also show how the boundary of complex objects can be
assembled by simpler parts such as surface patches. These come in a variety of
forms: planar polygons, parametric surfaces defined by a map from 2D-space to
3D-space, especially spline surfaces and trimmed surfaces, multiresolutionally rep-
resented surfaces (for example wavelet-based) and surfaces obtained by subdivision
schemes.
In a boundary representation only the boundary of a solid is described. This is
usually done by describing the boundary as a collection of surface patches attached
to each other at outer edges. One of the (topologically) most complete schemes is
the half-edge data structure as described by Mäntylä.
Simple objects constructed via any of the methods above can be joined to build
more complex objects via Boolean operators (constructive solid geometry, CSG).
Constructing an object one has to assure that the object is in agreement with the
topological requirements of the modeling system. Notoriously difficult problems are
caused by the fact that most modeling systems can compute surface intersections
only with a limited precision. This yields numerical results that may finally cause
major errors such as topologically contradictory conclusions.
The rather new method of ”Medial Modeling” is also presented. Here an object
is described by its medial axis and an associated radius function. The medial axis
itself is a collection of lower dimensional objects, i.e. for a 3D-solid a set of points,
curves and surface patches. This medial modeling concept developed at the Welfen-

2

lab yields a very intuitive user interface useful for solid modeling, and also gives as
a by-product a natural meshing of the solid for FEM computations.
Additional attributes can be attached to an object, like attributes of physical origin
or logical attributes. Physical attributes include photometric, haptical and other
material properties, such as elasticity or roughness. Physical attributes are often
specified by textures. These texture are mapped to the surface to relate surface
points to certain quantities of the attribute. The most common use for these are
photometric textures, although they can also be used for roughness etc. Logical
attributes relate the object to its (data-)environment. They can for example group
objects which are somehow related, or they can associate scripts to the object, such
as callbacks for user interactions.

3

Contents

1 History and Overview 5

2 Architecture of modeling systems 6

3 Voxel representation 8
3.1 Octrees . 9

4 Surface patches 10
4.1 Polygonal patches . 11
4.2 Parametric surfaces . 12
4.3 Trimmed surfaces . 13
4.4 Spline surfaces . 14
4.5 B-splines and NURBS . 15

4.5.1 Basis functions and knot vectors . 16
4.5.2 B-spline Curves . 17
4.5.3 B-spline Surfaces and Solids . 19
4.5.4 NURBS . 19

4.6 Subdivision surfaces . 20
4.7 Multiresolutional approaches . 23

5 Boundary representation 24
5.1 Planar models . 25
5.2 Half-edge data structure . 27

6 Constructive solid geometry 28

7 Medial modeling 31
7.1 A metric structure for medial modeling . 34
7.2 Boundary representation in Medial Modeling 36
7.3 Medial Modeling and topological shape . 38
7.4 Medial Modeling and meshing of solids . 39
7.5 Medial modeling and Finite Element Analysis 40

8 Attributes 42
8.1 Textures . 43
8.2 Model parameters . 46
8.3 Scripts . 46

9 Outlook and concluding remarks 46

4

1 History and Overview

Basically the history of Computer Aided Design (CAD) dates back to the late 1950s, when
computer systems became available to help constructing 3D shapes out of blocks of wood or
steel. These objects could then be used to stamp products (such as car body panels). Still
it was difficult to create shapes that coincided exactly with the curves on the drawing board.
Therefore the final standard was still a ”master model”. A method had to be found to describe
free form shape in a convenient, accurate and complete way to produce an indisputable defi-
nition. Drawing would still be created for the purpose of design or explanation, but numbers
should stipulate the shape.

Introducing the mathematical geometric concepts of curves and surfaces lead to the birth of
Computer Aided Geometric Design (CAGD). Even though basic work on the description of
curves was already published in the early 40’s by Schoenberg and Liming (working for the
American aircraft industry), many concepts were developed independently and not published
until many years later. First only simple forms were used: of course lines, then circular arcs
that could be transformed into elliptic arcs defined by only three points. However connecting
elliptic arcs was far too restrictive. Using a projector to project slides of different curve types
onto a wall (not necessary orthogonally) to create a larger variety of shapes turned out to be
not very practical. Nevertheless this idea lead to the introduction of mathematical models
employing projective geometry and matrix computations.

To define the shape of a curved surface parallel cross-sections through the object were used.
The surface in between these curves could then be defined by using a template (a curved plank
tool) that would be swept along two neighboring curves. As a next step one tried to change
the shape of the template while it was simultaneously moved along the curves. This lead to
a mathematical concept using polynomial curves and a ”characteristic net”. See [16] for a
detailed description of the historical aspects mentioned above.

The breakthrough in CAGD was the development of Bezier curves and surface patches by de
Casteljau’s at Citroen and by Bezier at Renault. Casteljau’s work which was slightly ear-
lier than Bezier’s was kept secret (a technical report by Coons did not appear until 1967).
Therefore the whole theory is named after Bezier. Further important work was done by Coons
(MIT, Ford), Ferguson (Boeing), deBoor (GM), Birkhoff and Garibedian (GM) in the 1960s
and Gordon (GM) and Reisenfeld in the 1970s. A continuation of this work was the combina-
tion with B-spline methods and later with rational B-splines: NURBS (see Section 4.4 and 4.5).

After the basic mathematical concepts were laid software and commercial applications could
be developed. The SCETCHPAD system created by Sutherland 1963 at MIT was a (arguably
the) prototype of a graphical user interface, with which a designer could interact with the
computer graphically by drawing on a CRT display with a light pen. Since then commercial
modeling systems have evolved drastically. The early 2D systems in the 1970s were only ca-
pable of creating virtual drawings. Advances in hardware, programming and solid modeling
in the 80’s lead to the boom of more sophisticated systems like CATIA (Dassault Systemes),

5

AutoCAD (Autodesk) or Pro/ENGINEER (PTC) in 1988 (to name only a few). The develop-
ment of boundary representation architectures (see Section 5) further advanced CAD by aiding
the designer in the process to create topologically and geometrically correct 3D objects.

By now the field of CAD has evolved into different directions and has interwoven with many
other areas. Advances in scientific sensor technology, the explosive growth in the number and
resolution of instruments, have given us the possibility to obtain massive amounts of digital
data describing our world (the earth’s surface, the atmosphere, the oceans and even the struc-
ture of our human body). Geometric entities are constructed from scattered point clouds (for
instance obtained from laser scans) or from voxel representations of some density distributions
(see Section 3). Methods have been developed to store and compress such data efficiently on
multiresolutional scales (for example wavelets, see Section 4.7).

Furthermore an object is not anymore simply designed for the purpose of manufacturing. In
entertainment and virtual reality 3D objects are created to exist only virtually. They can
be animated to reflect realistic behavior. Photorealistic rendering for example tries to create
images of a virtual scene that can hardly be distinguished from reality. Typical problems are
how to model hair or skin (we have already seen nice results in the recent animated movies),
or complex scenes involving fire or smoke.

To accomplish these task differential equations governing these processes have to be solved,
which leads to another field with an increasingly tight connection to CAD: Computer Aided
Engineering (CAE) employing methods like the Finite Element Analysis (FEA). CAE aids a
designer not just to create a virtual model, but to analyze its potential behavior (where it
might break, how air flows around it, how it reacts to heat etc.) in order to optimize the
design. Virtual crash test of a car for example lead not only to a better understanding of the
process and consequently to a safer design but also save much money for conducting real tests
with prototype models.

Future modeling systems will need to create a virtual reality allowing the designer to naturally
and intuitively interact with his virtual model. Moreover they will have to be able to combine
CAD with CAE in a way that allows the designer/engineer to apply his analysis directly on the
exact geometry representation (without any conversion or approximation) and to optimize the
shape afterwards by integrating the results (for instance from FEA) directly into the original
model.

2 Architecture of modeling systems

It is not easy to define a modeling system. A modeling system can be every system to model
a 2D or 3D object. Still many designers model with clay, hence from their point of view a
modeling system would be pencil, paper, clay and the designer himself. In the area of computer
graphics one is mainly interested in a virtual model of the object, which can be viewed from
different perspectives, modified and processed further, to simulate the behavior of the object in

6

hardware related level

high level operation layer

low level operation layer

user interface

hardware level interfaces (OpenGL, DirectX)

Figure 1: Software levels of a modeling system

reality. Here a modeling system consists of the computer hardware and software and of the user.

Before choosing or building a modeling system an appropriate model has to be found for the
design problem at hand. We will discuss different types of models in the following chapters but
we will not go into detail on how to map a given real world problem onto one of these models.
Please refer to [25] for some insights on how to accomplish this.

Today a strict separation of physical modeling for example with clay and virtual modeling with
a computer cannot be sustained, since many mixtures are used in practice. Clay modelers for
example often use a 3D-scanner to create a virtual model and on the other hand virtual models
can easily be printed with a 3D-printer to create three dimensional prototypes. Recently even
stronger connections are made using haptical devices and 3D-glasses to enable the user to feel
and see the object in 3D space.

Since the user is still the most important part of a modeling system, the interaction between
the human and the computer plays a crucial role. Therefore different hardware tools like scan-
ners, printers, viewing, and input devices have been developed to interact with the user. The
software is then needed to ensure the smooth interaction of all components.

The software of a modeling system can be divided into four abstraction layers (see figure 1):

1. The user interface (UI) is the part of the software that interacts directly with the user.
The UI is mostly graphical and presents the user with many options to create, modify,
analyze and view the object. Constructing a graphical UI is a complex venture where not
only the demands of the user have to be taken into consideration, but also the possibilities
of the hardware. It is important, that frequently repeated operations do not consume too
much time and that the user is constantly informed about the status of any operation.
An intuitive layout (of buttons, menus ...) should also be kept in mind.

2. The high level operation layer hosts mainly complex operations like intersecting, cutting,
modifying, analyzing and post processing of objects. These operations can be accessed

7

through the user interface and can be understood as the main modeling tools. They
should be robust and efficient to supply powerful tools to achieve every option the user
has in mind.

3. On the low level operation layer the data structure is located together with its low level
operators. These operators provide the next higher level with the controlled access and
modifying options of the data structure. They keep the data in an organized state.
Since the data structure and its operators are strongly connected an object oriented
programming language like C++ is well suited for the implementation.

4. The hardware related level is the lowest layer. Here the interaction with the input- and
output-hardware devices is implemented. Sometimes it is necessary to directly program
the hardware (driver programming, assembly language, etc.) to elicit the needed features,
but most of the time it is sufficient to use existing drivers and interfaces (e.g., OpenGL
or DirectX).
Another important aspect that needs to be dealt with on the lowest layer is the precision
of operations. Since floating-point arithmetic is only approximate, but not precise, small
errors may accumulate and possibly lead to catastrophic failure. Therefore provisions
have to be made to prevent this failure or an exact arithmetic has to be implemented,
unfortunately leading to a slowdown of the entire system.

We have seen that the data structure and its operators form the heart of the modeling system
(level 3). Therefore the data structure determines the feasibility and performance of the high
level operations. Many different types of data structures exist, each with its own advantages
and disadvantages.

More on modeling systems (with an approach slightly different from the one presented here)
can be found in [19].

3 Voxel representation

A typical volume based approach in modeling is the voxel representation. [25] refers to these
kind of models as ”sugar cube blobs” since these models can be thought as a set of sugar
cubes glued together appropriately. This concept is a straight forward generalization of pixel
graphics as known from computer graphics. Whereas in pixel representations a 2D image is
discretized into a set of squares with integer coordinates (the pixels), in voxel representations
3D space is split into a regular cubic grid consisting of voxels. The easiest way of representing
an object like this is to assign to each voxel a Boolean value, deciding if the volume described
by the voxel is part of the object or not. Figure 2 shows a typical 12× 12× 12 representation
of a full sphere. A problem of the voxel based approach is, that the approximation of the
objects volume at low resolutions is usually relatively poor, while higher resolutions increase
memory consumption at a cubic rate. As a compromise for voxels intersecting the boundary
of the object, the Boolean values can be changed to fuzzy numbers depending on the volume
of the intersecting part of voxel and object. Additional attributes as described later can also
be assigned to voxels. In medical imaging applications or geology for example density distri-
butions are often represented as gray values assigned to each voxel. Furthermore voxels do not

8

Figure 2: Voxel representation of a full sphere

necessarily need to be cubes, but can be cuboids with different sidelengths.

Voxel representations make Boolean operations like intersection or union of two objects ex-
tremely easy. Only the corresponding Boolean operations for their assigned voxel values need
to be carried out, for example the logical “and” for the intersection. Again this is relatively
costly at a higher resolution due to the enormous number of voxels involved.

The voxel representation method can be viewed as a special case of the CSG technique dis-
cussed in section 6 with only one primitive (the cube at integer coordinates) and one operator
(the union).

Voxel representation is also known as spatial-occupancy enumeration (see [17]).

3.1 Octrees

Voxel representations can become memory consuming if a greater level of detail is desired.
Thus sometimes voxels are organized into octrees. These are trees where each node is of de-
gree eight or zero. Octrees are obtained by starting with one voxel large enough to enclose
the whole object, representing the root node of the octree. In general this voxel is a poor ap-
proximation of the object, therefore this voxel is divided into eight equal sized smaller voxels,
representing the child nodes of the root node. For each voxel an approximation criterion is
checked, for example if the voxel intersects the boundary of the object. If this criterion is met,
it is subdivided further, otherwise subdivision is omitted. This process is repeated for those
voxels, that require further subdivision until the desired level of approximation is reached.
To understand the way an octree is obtained refer to figure 3. Here the octree’s 2D analogue,
a quadtree, for a triangle is constructed. The resulting quadtree is shown in figure 4. Note
that only squares (and thus nodes) contributing to a higher level of detail are to be refined
in a following step. Hierarchical representation schemes like octrees make tasks like collision
detection particularly easy: First the two root nodes need to be checked for intersection. If
and only if an intersection is found, the child nodes belonging to the respective objects are

9

Figure 3: A quadtree for a triangle

Figure 4: Resulting quadtree for the triangle

checked and so on. This is almost as easy as in the voxel case while being far more efficient.
For an overview on how to implement Boolean operations for octrees see [17]. For a compre-
hensive survey of octree related techniques see [44].

Both voxel and octree representations may require conversion to a boundary representation
before FEM computations can be carried out. This conversion can be accomplished using the
famous marching cubes algorithm ([30]). Figure 5 depicts the result of such a conversion.

4 Surface patches

Surface patches form the base for boundary representation schemes. Therefore before we can
discuss the foundations of boundary representations in section 5 we need to know, how to
model a surface – the boundary of our object.

We define a surface patch to be a connected two-dimensional manifold in 3D. A surace patch is
basically a set of points in 3D, where each inner point has a small surrounding neighborhood
homeomorphic to the 2D open disc. We define the boundary of this set to be part of the
surface patch.

There exists quite a huge variety of surface patches matching this definition and most of them
are not easily represented by a data structure. Furthermore we should keep in mind that
surface patches are usually meant to be ”glued” together or identified along their boundary
(see section 5) in order to form more complex surfaces. Therefore they are mainly simple
bounded and bordered manifolds. Nevertheless we shall give no formal definition of simplicity
but rather present a selection of commonly used techniques for implementing special classes of

10

Figure 5: Result of a marching cubes conversion

surface patches.

For a detailed discussion of many of the topics mentioned in this section refer to [20]. Also
refer to [25] for some deeper insights on surface patches.

4.1 Polygonal patches

Given a sequence of coplanar points p0, . . . , pn in 3D we define the sequence of edges joining
two points pi, pi+1 plus the edge pn, p0 to be the closed polygon of the points. We define the
geometric interior of the polygon to be the set of all points in the same plane, that cannot be
reached by an arbitrary path from a point far away in the same plane (from a point outside the
convex hull of the polygon) without crossing the polygon. We will consider every geometric
interior point plus the boundary of these points to be part of the polygonal patch.

Of course this definition gives no efficient algorithm for testing, if a point belongs to the polyg-
onal patch. There exists a variety of methods to do this ([17]), each meeting our definition in
special cases (and not in others). For instance some efficient algorithms fail, if the polygon is
not simple, meaning it possesses self intersections.
Figure 6 shows different polygons with their geometric interior painted red. It is often desirable
to allow polygons to have inner boundary components (i.e., inner parts of the boundary that
are not directly connected to the outer boundary). We will refer to these as inner loops (see
also section 5). Figure 7 shows a rectangular polygon with two inner loops. Note that these
polygons also match our definition of a surface patch.

Because every polygonal patch can be decomposed into a set of triangular patches, it is some-
times sufficient to consider only triangular patches, yielding its triangulation. These can be
handled very efficiently since they are always convex and planer. Especially inside-outside
testing and various other calculations are easily carried out for triangles. Nevertheless since

11

Figure 6: Geometric interior of polygons

Figure 7: Polygon with inner loops

a triangulation is not unique for a patch, a chosen triangulation sometimes introduces diffi-
culties into these calculations. Often elaborate meshing techniques introducing new vertices
and yielding almost equilateral triangles need to be applied. Therefore more general schemes
allowing also non-triangular patches should be carefully considered as well.
Triangulation is a special case of general meshing techniques, approximating a curved surface
with planar polygons. Figure 8 shows an example of an object composed of polygonal patches
(here only triangles).

4.2 Parametric surfaces

Often we want the surface to be really curved instead of just (piecewise) planar like in the
polygonal case. This can be achieved employing parametric surfaces.
Let D be a subdomain of 2D space and let f : D → R3 be a continuous map. Often we
require f to be differentiable, mostly f will be a homeomorphism onto its image set f [D] and
generally we assume the differential of f having maximal rank. We will call the pair (D, f) a
parametric surface with parametrization f , the surface patch is represented by the image of f1.

Note that we assume no further restrictions for D, allowing explicitly every planar polygon (in
2D), even with inner loops. This is because it can be sometimes intricate to find parametriza-
tions for special surfaces. For instance a ring-like structure as depicted in figure 9 can easily
be represented by the domain

[−1, 1]× [−1, 1]\
[
−1

3
,
1
3

]
×
[
−1

3
,
1
3

]

1Topologists call f [D] the image set of f and R3 the range of the map. Analysts often call f(D) the range of
the map and do not introduce a special name for the image set of f .

12

Figure 8: Triangulated object

Figure 9: Parametrization of a planar ring

with parametrization

f(x, y) :=
max{|x|, |y|}√

x2 + y2

 x
y
0

Nevertheless most of the time D will be polygonal or, for convenience, the unit square. The

spline surfaces discussed in section 4.4 are a popular example of parametric surface patches. An
alternative method is to model using partial differential equations. This elaborate technique
was developed by M. Bloor and M. Wilson at the University of Leeds and is described in [36].

4.3 Trimmed surfaces

We have just seen that the domain of a parametric surface is not necessarily the unit square.
We can generalize this principle by cutting out polygonal and even non-polygonal subdomains
(e.g., domains bounded by splines curves) from the parameter space and thus trimming the
surface patch itself. This process is depicted in figure 10, where a user selects a closed curve in
parameter space (green) which is then removed from the parameter space and thus trimmed

13

Figure 10: Trimming of a surface patch: the surface patch (left), the superimposed parameter space is
being edited (middle), the resulting trimmed surface patch (right)

out of the surface patch (black). Note that trimming the surface patch directly (instead of the
parameter domain) is a rather complex task since it theoretically involves the computation of
the inverse f−1 of the parametrization f (see [37]).

4.4 Spline surfaces

It is well known that for a given set of 3D points p0, . . . , pn there is a unique polynomial curve

α(t) =
n∑
i=0

cit
i

with c0, . . . , cn ∈ R3 such that α interpolates every point pi. We refer to the points ci as control
points of α.
Polynomial interpolants suffer from three major drawbacks:

• They tend to form unexpected ”swinging” curves that can move far away from the
interpolation points.

• Construction and evaluation of these curves are numerically unstable.

• There is no intuitive interrelation between coefficients of a polynomial and the shape of
the resulting curve or surface.

Splines try to overcome these problems by two basic techniques:

• Use a type of curve, that is numerically and visually more ”tame” (i.e. closer to its
interpolation points).

• Compose the curve piecewise from sub-curves.

All different types of splines are obtained from piecewise sub-curves, they only differ by the base
type chosen for these curves. Best known and widely used are Hermite-splines, Bezier-splines,
B-splines and NURBS, and of course monomial-splines (where each sub-curve is an ordinary
polynomial curve). These are all curves of piecewise polynomial type (except the NURBS
which are piecewise rational polynomial). Furthermore there are non-polynomial types like
trigonometric splines, exponential splines or splines based on sub-curves obtained from other
subdivision processes (which are not necessarily polynomial), although these are more rarely
used as they may be computational costly.
Formally we will call a curve a spline (of degree n) if it is

14

u
v

Figure 11: Control array of a spline surface

a) piecewise composed of the same type of sub-curve belonging to the same finite dimen-
sional vector space of functions2,

b) at least n− 1 times continuously differentiable.

Note that depending on the type of spline chosen we often need additional control points be-
sides the interpolation points to characterize the curve completely.

Using the techniques from subsection 4.2 one can easily obtain spline surface patches from
spline curves. Given an array of control points (cij) with i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} each
sequence c1j , . . . , cnj defines a spline curve αj , which evaluated at a certain point x yields a
further sequence of control points α1(x), . . . , αm(x). These form a spline βx which can then be
evaluated at a point y, this way giving a resulting range point. This process describes a map

f(x, y) := βx(y)

where f in fact is a parametrization of a surface patch.
Figure 11 shows a control array and the underlying spline surface.

For a detailed overview on spline techniques see for example [16], [20] and [54]. A recent
reference can be found in [37], this book also deals with problems of spline surface intersec-
tions, which are important when splines are combined with CSG representations (see section
6). Certainly the most elaborate spline technique is based on NURBS (non uniform rational
B-splines), see [41] for a comprehensive overview.

Figure 12 shows a wrench modeled with piecewise B-spline patches.

4.5 B-splines and NURBS

We will now explain the construction of spline curves and surfaces in more detail at the example
of B-splines. B-splines and NURBS are commonly used in current CAD systems. Their ability

2Note that the subcurve is in most cases C∞.

15

Figure 12: Wrench composed of B-spline patches

to model smooth objects as well as sharp corners suites them perfectly for design applications.
NURBS (non uniform rational B-splines) advance the B-spline technique to allow rational
weights, thus allowing even more freedom for the designer to model, for instance, perfectly
round disks or tori, that cannot be created by piecewise polynomial curves or surfaces. B-spline
as well as NURBS curves and surfaces can be controlled and modified easily by adjusting the
corresponding control points and their knot vector. We will explain these terms in the following
sections.

4.5.1 Basis functions and knot vectors

Let T = (t1, t2, . . . , tn+d+1) be the so called knot vector with ti ∈ R and t0 ≤ t1 ≤ . . . ≤ tn+d+1.
The components of this vector ti will be called knots. They represent a set of coordinates in the
parametric space. Here n is the number of basis functions and d is their polynomial order, as
we will see the number n will correspond with the number of control points of a B-spline that
we will construct with the help of the basis functions later. We now define the basis functions
starting with piecewise constant

N0
i (t) :=

{
1 for ti ≤ t < ti+1

0 else

}
for i = 1, . . . , n+ d

and with higher degrees d

Nd
i (t) :=

t− ti
ti+d − ti

Nd−1
i (t) +

ti+d+1 − t
ti+d+1 − ti+1

Nd−1
i+1 (t)

for i = 1, . . . , n. These recursively defined functions Nd
i (t) are called basis functions of poly-

nomial degree d.

We see that the knots define the intervals of the parameter space on which the basis functions
live. If the knots are equally spaced, they are called uniform otherwise non-uniform. If we use
the convention 0

0 := 0 in the definition of the basis functions, we can allow knots to be located

16

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 1 2 3 4 5

N 1
1 N 1

2 N 1
3

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 1 2 3 4 5

N 2
1 N 2

2 N 2
3

Figure 13: Basis functions of degree 1 and 2 on uniform knot vector

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 1 2 3 4 5

N 2
1 N 2

2 N 2
3 N 2

4
N 2

5 N 2
6 N 2

7
N 2

8

Figure 14: Basis functions of degree 2 on non-uniform knot vector

at the same position. Such knots are called repeated knots. If the first and last knot are each
repeated d+ 1 times the knot vector is said to be open.

Figure 13 shows the basis functions of degree 1 and 2 on a uniform knot vector. For uniform
knot vectors the functions Nd

i (t) are identical except for translation. Generally basis functions
of degree d have d − 1 continuous derivatives, for example, the quadratic functions are C1

continuous everywhere. This continuity can be decreased by repeating a knot in the knot
vector. The basis function becomes interpolatory if the multiplicity of an inner knot reaches
d as can be seen in the example in figure 14 where we used a non-uniform, open knot vector.
Note also that because the multiplicity of the first and last knot is d + 1 the functions are
interpolatory at the ends.

B-spline basis functions have many practical properties. We will only present the two most
important properties here:

1. Support interval: The support of Nd
i is [ti, ti+d+1) meaning that Nd

i (t) = 0 for t /∈
[ti, ti+d+1).

2. Partition of unity:
n∑
i=1

Nd
i (t) = 1 for t ∈ [td+1, tn−d)

4.5.2 B-spline Curves

By constructing linear combinations of the basis functions, it is possible to construct B-spline
curves:

C(t) =
n∑
i=1

ciN
d
i

The n coefficients ci are called control points and are normally points in R2 or R3 defining 2D
or 3D curves (even though they could be of higher dimension as well). If we connect the control
points with line segments, we speak of the control polygon. In Figure 15 you see a B-spline
curve of degree d = 2 together with its control polygon. We used the same open knot vector

17

Figure 15: B-spline curve of degree 2 with basis functions and knots as in Fig. 14

Figure 16: Local influence of a control point

described earlier to demonstrate the interpolation of the first and last control point and of the
point c4 where we raised the multiplicity of the corresponding knot to the polynomial order
d = 2.

Some important properties of B-spline curves are:

1. Continuity: Generally B-spline curves of degree d are Cd−1. If the multiplicity of a knot
is raised to k, the continuity decreases to Cd−k.

2. Convex Hull: A B-spline curve is always contained in the convex hull of its control points.

3. Locality: Moving a control point changes the curve only locally, that is, changing ci
changes C(t) only for t ∈ [ti, ti+d+1) (see figure 16).

4. Affine Transformation: Applying an affine transformation to the curve can be done by
applying it to the control points.

5. End Point Interpolation: The choice of knots in case of an open B-spline curve ensures
start and end point interpolation.

It is possible to represent the same B-spline curve with a higher amount of control points by
applying knot insertion or degree elevation. Knot insertion simply represents the same curve
with one additional control point by adding a new knot in the knot vector (resulting in n+ 1
basis functions). The degree elevation on the other hand increases the polynomial degree of
the basis functions using the recursive definition. In this case the unique knot values need to

18

be repeated in order to keep the discontinuities in the derivatives of the curve. Therefore the
multiplicities of existing knots accounts for the number of newly created control points. For
a detailed description of knot insertion and order elevation refer to [16] and [20]. It should
be noted that both methods yield a control polygon that approximates the curve much better
than the original.

4.5.3 B-spline Surfaces and Solids

Similar to B-spline curves B-spline surfaces can be constructed. For this purpose we need a
control net cij , i = 1, . . . , n, j = 1, . . . ,m and two knot vectors U = (u1, u2, . . . , un+d1+1) and
V = (v1, v2, . . . , vm+d2+1). Using a tensor product of B-spline basis functions Nd1

i and Md2
j

the B-spline surface can be defined by:

S(u, v) =
n∑
i=1

m∑
j=1

cijN
d1
i M

d2
j

This method can easily be continued to define tensor product B-spline solids using a 3D control
net, three knot vectors and three basis functions. Sometimes it makes sense to use even more
variables and high dimensional control points to represent multivariate non linear polynomial
systems geometrically (see [37] for an application using Bezier curves). In order to solve such
systems one can take advantage of the B-spline properties (especially the convex hull property).

4.5.4 NURBS

NURBS is short for non uniform rational B-splines. NURBS curves are an extension of B-
splines that are superior mainly because of two aspects. First, non-uniformity allows better
approximation of curves and surfaces while using less control points (see [52]). Second, impor-
tant geometric objects like circles, ellipses (conic sections in general) cannot be represented by
a B-spline curve. Nevertheless they can be constructed exactly by projecting three dimensional
piecewise quadratic B-spline curves into R2 (see figure 17), which can be done by representing
the curve as a rational polynomial C(t) = g(t)/h(t) with two piecewise polynomial functions
g and h.

In order to construct a NURBS curve in Rk we use a set of control points cwi (called projective
control points) for a B-spline curve in Rk+1 with corresponding knot vector T . To get the
control points of the NURBS curve in Rk we simply take the first k coordinates of cwi and
divide them by the k + 1 coordinate that we will call wi (the i-th weight):

cwi = (x1, x2, . . . , xk, wi) ∈ Rk+1

ci = (x1
wi
, x2
wi
, . . . , xk

wi
) ∈ Rk

This is in fact a central projection of the points cwi onto the plane at xk+1 = wi = 1. We can
now define the rational basis functions and the NURBS curve:

Rdi (t) =
wiN

d
i (t)∑n

j=1wjN
d
i (t)

and C(t) =
n∑
i=1

ciR
d
i

19

C = C1 7

C2

C6

C3

C5

C4

-6 -5 -4 -3 -2 -1 0 1 2 3 -6
-4

-2
 0

 2
 4

 6
 0

 0.5

 1

 1.5

 2

 2.5

 3
C i

w

C i

w i

Figure 17: NURBS curve in projective space with weights wi in the z-coordinate

NURBS surfaces (and solids ...) can be constructed in a similar way by employing the basis
functions:

Rdij(u, v) =
wijN

d1
i (u)Md2

j (v)∑n
k=1

∑m
l=1wklN

d1
k (u)Md2

l (v)

4.6 Subdivision surfaces

B-splines address most of the problems arising with the use of simple polynomial curves and
surfaces. In particular they provide a set of control points that is closely related to the final
shape of the computed curve or surface. This idea of generating the final shape in a geometrical
sense from a set of underlying control points can be generalized to the concept of subdivision
schemes.

Let there be a (possibly infinite) sequence r = (. . . , r−1, r0, r1, . . .) of real weights and a se-
quence c0 = (. . . , c0,−1, c0,0, c0,1, . . .) of real numbers. Then a function can be iteratively defined
by:

f0(i) := c0,i

fj(i/2j) :=
∞∑

k=−∞
fj−1((i+ k)/2j)

Each fj is defined on successively finer subsets of R (i.e., f0 is defined on the integers only, f1

is additionally defined on the midpoints between two integers and so on). One should notice
that for odd k the value of fj−1((i + k)/2j) is initially undefined. Thus we set this value to
1/2(fj−1((i+ k − 1)/2j) + fj−1((i+ k + 1)/2j)).
We can now define a limit function

f := lim
j→∞

fj

20

over a dense subset of R, which means that for each x ∈ R we find an arbitrary close x̃ where
f is defined. We call this function f the subdivision function for given control points c0
and subdivision weights r. It is well defined in case the weights admit pointwise convergence
for f(x).

The best known example of a subdivision scheme is the Chaikin subdivision with weights
r = (1/2, 1/2). Figure 18 shows an example of four iterations of a Chaikin subdivision. We

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6

"it0.dat"
"it1.dat"
"it2.dat"
"it3.dat"

Figure 18: Four iterations of a chaikin subdivision

observe that the resulting curve is smoothed by further iterations, while still resembling the
original control points. However, this does not apply to all kinds of subdivision schemes.

The following classes of subdivision schemes are distinguished:

• Stationary schemes where the weights r do not depend on the iteration j,

• uniform schemes with the weights independent of the position of evaluation i.

Most of the uniform schemes are not endpoint interpolating, which would be highly desirable
in most applications. Therefore they have to be modified at the boundaries of the parameter
space, to yield non uniform but endpoint interpolating schemes. Very little is known about
non stationary schemes, most schemes applied today are in fact stationary.

Subdivision schemes are deeply interlinked with wavelets that we will look at in section 4.7. We
should only stress here that certain subdivision schemes yield classes of well known functions.
For example for r = 1/2(1, 1) we get the Haar functions (see figure 22) and for r = 1/4(1, 2, 1)
cubic B-splines are obtained. In fact, it turns out that functions representable by wavelets (see
section 4.7) are just the subdivision functions.

So far we have only dealt with constructing functions from a set of control points. Never-
theless, building curves and surfaces from the obtained functions is straightforward. Just like
with B-splines, one can define a parametric curve as a vector (fx, fy) of two subdivision func-
tions fx, fy. A surface patch can be generated using tensor products, as described in section 4.4.

A disadvantage of using tensor product surfaces is that one is limited to surface patches gener-
ated by regular quad meshes. In order to extend the ideas of subdivision to triangular meshes

21

1/8

3/83/8

1/8

β

β β

β

β

β

1− βk

1/2 1/2 1/8 1/85/8

odd even

interior

boundary

Figure 19: Masks for Loop subdivision

β
k

β
k

β
k

β
k

β
k

γ
k

γ
k

γ
k

γ
k

γ
k

3/8

1/16 1/16

1/161/16

odd1/4 1/4

1/41/4

3/8

1/2 1/2 1/8 1/83/4

boundary

1−β−γ

even

interior edge

interior face

Figure 20: Masks for Catmull-Clark subdivision

a variety of special subdivision schemes for surface patches has been developed.

For subdividing a mesh two principal approaches exist: subdividing the faces of a mesh (primal
subdivision), or subdividing the vertices (dual subdivision). Furthermore, most schemes make
a distinction between vertices that are generated in the most recent subdivision step (odd
vertices) and vertices that were already there (even vertices). To gain a limit surface that is,
for example, C1-smooth or interpolating one has to treat these vertices differently.

One of the most common schemes is the Loop subdivision. It is a primal scheme. Figure 19
shows the subdivision masks for splitting edges (generating odd vertices) and treating even ver-
tices. The constant β in the Loop subdivision scheme can be chosen as β = 1

k (5
8−(3

8+ 1
4 cos 2π

k)2)
(see [29]) or β = 3

8k (see [48]). Loop subdivision results in an approximating, C1-smooth limit
surface ([55]). For a regular mesh the limit surface is even C2-smooth.

While Loop subdivision is the best known scheme for triangular meshes, the most widespread
technique for quad meshes is Catmull-Clark subdivision. Figure 20 shows the masks for this
scheme. Catmull and Clark ([12]) suggest to choose β = 3

2k and γ = 1
4k . Note that Catmull-

Clark subdivision is defined for quad meshes only. This means if there are triangles or polygons
with more than four vertices the mesh has to be subdivided into quads first (see figure 21).
The limit surface for this scheme yields surfaces that can be represented by bicubic tensor
product splines. For a regular vertex the surface is C2-smooth, everywhere else C1-smooth.

22

Figure 21: Decomposing a mesh into quads

Aside from Loop subdivision and Catmull-Clark subdivision a variety of different schemes has
been developed in order to overcome specific disadvantages of the aforementioned methods, for
example Doo-Sabin, Butterfly and Kobbelt. For an overview and some implementation details
refer to [56].

4.7 Multiresolutional approaches

As we have seen in subsection 4.4 splines bring great improvements in curve and surface design.
Nevertheless modern design and modeling applications may demand further features from a
surface representation which are in detail (see [46]):

• easy approximation and smoothing of a representation, gained from external sources
(such as scan points from a digitizer)

• changing the macro scale appearance without changing the micro scale appearance (the
“character”) and vice versa

• edit a representation on various, preferably continuous levels of detail

These issues can be addressed by using a relatively new idea, the so called B-spline wavelets
instead of ordinary B-splines for curve and surface modeling.

The idea of a a wavelet-representation is to represent a curve using linear combinations of
functions given in different levels of detail. Wavelets are employed using nested vector spaces
of functions, that is, vector spaces Vi fulfilling

V0 ⊂ V1 ⊂ . . . ⊂ Vn ⊂ . . .

For each pair of spaces Vi and Vi+1 there is a set of functions that enriches a base of Vi to a
base of Vi+1. In other words, these additional functions span the othogonal space Wi of Vi with
respect to Vi+1. These additional base functions are called wavelets, while the base functions
of the hierarchical spaces Vi are called scaling functions. The Haar base functions shown in
figure 22 are the best known examples. Thus we get a representation where a manipulation of
a single coefficient has only relatively local impact, depending on the level. Since B-splines also

23

Figure 22: Haar base wavelets

Figure 23: Some B-spline wavelets, adapted from [46]

form a vector space, wavelets can be built from them. Figure 23 depicts B-spline wavelets for
degree 0 up to degree 3 for the third level of detail (thus giving 23 = 8 functions per degree).
For a comprehensive overview on wavelets from an analytical point of view refer to the book
by [31].

5 Boundary representation

A boundary representation (B-rep) of a solid describes the solid only by its oriented boundary
surface. The orientation is needed to decide easily which side of the boundary is the top side
and which is the bottom side (even if the object is not closed). Since a normal vector is known
everywhere B-rep solids can be visualized very easily.

Generally it is possible to use a variety of different surface patches to model the boundary.
These patches (e.g., NURBS-patches, parameterized surfaces or simply planar polygons, see
section 4) have to be connected with each other at their boundaries. The orientation must not
be destroyed during this step.

24

In most applications planar polygons are used as patches (very often only triangles are per-
mitted). These patches are called faces. Their borders consist of vertices and edges. Different
data structures have been developed to hold the information necessary to create and work
with a B-rep solid. The location and orientation (normal vector) of a plane containing a face
have to be known and also the correspondence of the vertices and adjacencies of the edges and
faces need to be controlled. Furthermore it is necessary to ensure the feasibilty (topological
integrity) of a virtual object (guaranteeing that it can actually be build). A solid, for example,
should not contain any holes, or its boundary patches should not be twisted like the Moebius
strip.

The boundary representation of a solid therefore has two parts:

• the topological description of the connectivity and orientation and

• the geometric description to place all elements in space.

To understand how the topological data is maintained and how topological integrity can be
ensured it is useful to understand planar models and Euler operators first. Later on a half-edge
data structure is introduced as an example on how to implement a B-rep model.

5.1 Planar models

Planar models are useful to represent the topology of a solid. A planar model is a planar
oriented graph {F,E, V } consisting of a set of faces F = {f1, f2, ...}, edges E = {e1, e2, ...}
and vertices V = {v1, v2, ...}. Every edge has its orientation. If different faces share the same
edges or vertices, they have to be identified with each other. Identified edges must show in
the same direction. In other words, the directions of the edges imply the way they have to be
identified. Note that with the half-edge data structure described in the next chapter one edge
always consists of two half-edges showing in opposite directions. Here we only have a single
edge, which can appear several times in a planar model. Figure 24 shows an example of the
planar model of a tetrahedron. Figure 25 shows a model of the torus and the Klein bottle.

v 1e 3

e 2

e1

e1
e4

e 3

v 2
v 2v 1

v 3
v 4

e5 e5

e4

v 2

e6

e6f3

f4

f2f1

e 2

v 3

v 3 v 4

v 1

v 4

f1 f2

f3

f4

v 1 v 1

v 1

e 3 e 3

e 2

e 2

e1

e1

v 2

v 4v 3

(b)(a)

Figure 24: Planar model of a tetrahedron

The only difference between the two models in figure 25 is, that one of the edges e2 points
in the opposite direction. This results in a different identification. The two models therefore
describe different objects.

25

v1 v1

v1v1

e2

e2

e1 e1f1
F = {f }
E = {e , e }
V ={v }1

1
21

F = {f }
E = {e , e }
V ={v }1

1
21

v1v1
e2

e1 e1

v1 v1e2

f1

(b)

(a)

Figure 25: Planar model of the (a) torus (b) Klein bottle

A solid can have different planar models. An example can be found in figure 26, where two
different planar models of the sphere are presented.

1

1E = {e }
F = {f , f }

V ={v }

1 2

1 2F = {f , f }
21E = {e , e }

1 2V ={v , v }

v1

v1

e1

f1

f2

v1

v2

f1e1 e2

f2

v1 v2

(b)

(a)

Figure 26: Planar models of the sphere

From a planar model the Euler characteristic can be calculated quickly: χ = |V | − |E|+ |F |.
Here it does not matter which particular planar model of a solid is used. The Euler character-
istic of the tetrahedron is χT = 4− 6 + 4 = 2, the characteristic of the torus and Klein bottle
(figure 25) is χB = 1−2+1 = 0, and of the sphere (figure 26) is χS = 1−1+2 = 2−2+2 = 2.

Based on the planar models a set of topological operators was developed to manipulate models
in a way that leads to all models of physical significance while making sure that only feasible
models3 can be created. These topological operators are split into two classes, the local and
global operators.

Local operators work on planar models without modifying the Euler characteristic while global
operators can create objects of higher genus (such as the double torus), thus changing the Euler
characteristic. A detailed description and proofs of the properties of these operators can be
found in [33].

3For instance non-orientable models cannot be created.

26

5.2 Half-edge data structure

In order to work with a B-rep model one needs to construct a data structure, combining geomet-
ric and topological data. Probably the oldest formalized structure, the so called winged-edge
data structure, was introduced by [5]. The half-edge data structure (see 27) is a variation
by [33] that permits multiple connected faces and sustains a close relationship to the planar
models.

The half-edge data structure utilizes the fact that each edge of the boundary surface of a closed
solid belongs to exactly two faces. So every edge is split into two half-edges which are oriented
in opposite directions. Every face has exactly one outer boundary (outer loop) consisting of
counterclockwise oriented half-edges (if viewed from above) and possibly further inner loops
consisting of half-edges which are oriented clockwise. The orientation of the loops makes it
possible to determine the top and the bottom side of each face. All vertices of a face have to lie
on the same plane and are saved in three dimensional homogeneous coordinates. Every vertex
has to be unique and can be referenced by many half-edges (depending on how many faces
share that vertex). Since all half-edges know their neighbor and their parent loop, which again
knows the parent face, finding neighbor faces and running over the data structure is quite easy.

Figure 27: Half-edge data structure

A set of low- and high-level operators (the so called Euler operators) can be derived from the

27

Figure 28: An object composed of CSG primitives

topological operators of the planar model (see the previous subsection). This permits opera-
tions on the data structure in an ordered manner. Any further operators can be implemented
using the Euler operators, thus granting the technical feasibility of the modeled object.

6 Constructive solid geometry

One of the best known volume based approaches to modeling is the constructive solid geometry
(CSG) approach. Again, refer to [17] or [19] for an overview on the subject.

In CSG every object is either one of a set of simple objects, the primitives, or it is derived
from these by a sequence of operations. Various CSG schemes exist. They are different with
respect to their sets of primitives and operations. In 3D modeling the most commonly used
primitives are:

• ball,

• cylinder,

• box,

• cone.

Further possibilities include surfaces of revolution, implicit bodies and boundary representation
objects. This shows that CSG can be combined with other methods (discussed above) to gain
a greater variety of primitives.
A suitable set of operations must include:

• Euclidean motions (translation, rotation)

• union,

• intersection,

• difference.

The latter three are called regularized Boolean operations because they are analogous to the
well known Boolean set operations with a slight difference we will discuss later. Let us first
consider the example shown in figure 28. The object on the left side is composed of the prim-
itives on the right side via the union operation. Note that parts of the objects that are inside

28

Figure 29: CSG tree for the bird object

other objects are ”swallowed”, there are no more overlaps or double points.

Internally composite objects are kept as binary operator trees. Figure 29 shows one of such
trees, ∪ denotes the union operator. Obviously neither the sequence of operators nor the re-
sulting tree is unique for a given result. Nevertheless by this way CSG keeps a history of the
construction steps, hence every complex object can be decomposed into primitive parts again.
This is not possible with most other methods.

Figure 30 shows another example, a wrench composed of the primitives shown on the right.
Formally the regularized Boolean operators are defined as follows: Given two objects A and B
and a Boolean set operator ◦. The result of the corresponding regularized Boolean operator
◦ is defined to be A◦B := A◦ ◦B◦ where A◦ denotes the interior of A and A denotes the
closure. This definition avoids the problem of Boolean operators to yield results that do not
represent 3D objects. For example, the intersection of two adjacent boxes sharing one side
would normally result in just that side, returning a non 3D object.

Sometimes further operations are included like non-Euclidean matrix operations (scaling, skew
transforms) or surface sweep operations. One has to take care that these additional operations
are applicable for the given primitives. It is mostly impossible to apply sweep operations to
objects given in implicit representations while keeping their implicit representation.

CSG is best suited for ray tracing and other applications that require only inside-outside testing
as these can be easily carried out in a CSG representation. Also voxel representations can be
gained easily from a CSG representation. On the other hand CSG can not easily be applied
in situations that require a meshing of the given object, for instance, for FEM computations
since this demands the elimination of unnecessary (“swallowed”) object parts first which can
be costly. A method that avoids these computations is to apply the marching cubes algorithm
([30]). This only requires testing if an arbitrary point is inside the interior of an object,
which is easily possible for a CSG representation. One major drawback of this method is that

29

Figure 30: A CSG wrench model

30

Figure 31: Medial axis of a domain

important details of the model might be lost. Another method would be to mesh each primitive
separately4 and join these5 to form the mesh.

7 Medial modeling

Medial modeling is the newest one among the modeling concepts presented in this survey paper
and is essentially based on research of the Welfenlab, the authors research lab at the University
of Hannover (see [53] for a brief overview of results). The suggestion to use the medial axis
concept as a tool for shape interrogation appears to have been discussed first quite extensively
by [7]. For a detailed mathematical analysis of the underlying mathematical concepts (in the
generalized context as cut loci) refer to [49], [50] and [51]. The latter paper presenting an ex-
tended analysis of mathematical foundations of the medial axis contains also early results (e.g.
the one stated below in formula (1)) indicating already the possibility to employ the medial
axis as a geometric modeling tool. The latter aspect will be a subject discussed in this section.

One could perhaps summarize the most relevant points of medial modeling as follows: In me-
dial modeling a solid is described by its medial axis and an associated radius function. The
medial axis being a subset of the solid is a collection of lower dimensional objects. For a
general 3D-solid the medial axis mostly consists of a connected set built by a collection of sur-
face patches and curves. Medial representations often simplify the process of gaining volume
tessellations for the given object, supporting the meshing of solids, see section 7.4. They also
offer new possibilities for the construction of intuitive haptic user interfaces that are useful to
mold a solid’s shape.

The basis of medial modeling can be summarized in a few geometric observations, ideas and
definitions that are outlined here. Let K be a solid in the 3-dimensional or 2-dimensional
Euclidean space. The medial axis M(K) of K being a subset of the solid contains all points
in K that are centers of maximal discs included in K. One usually includes in the medial axis
set M(K) its limit points. Figure 31 shows the medial axis (green) of a domain (black) with
some maximal discs given (red). We assign to any point p in the medial axis M(K) the radius
r(p) of the aforementioned maximal disc with center p and radius r(p). This disc is denoted

4Most of the time it is relatively easy to give a mesh for each primitive.
5This is the difficult part.

31

Figure 32: Maximal discs defining a shape

with Br(p)(p). The pair (M(K), r) described by the medial axis M(K) of a solid K and the
associated maximal disc radius function

r : M(K)→ R+

is called medial axis transform, where R+ denotes the non-negative real numbers. This pair
(M(K), r) yields a new possibility to represent the solid K simply as the union of the related
maximal discs:

K =
⋃

p∈M(K)

Br(p)(p) (1)

For details see [51]. Figure 32 shows how the union of maximal discs defines the shape of a
planar domain. The general reconstruction statement expressed in equation (1) already holds
for solids with merely continuous boundary surfaces. However if the solid has merely contin-
uous boundary surfaces (or continuous boundary curves for solids being closed 2-dimensional
domains) then the medial axis may have a ”wild” structure that may be presented by a set
being dense in some open 3-dimensional sets (containing 3-dimensional discs).

In case one poses some regularity conditions for the solid’s boundary surface ∂K, such as
curvature continuity, the respective medial axis M(K) will have a more benign structure. For
instance if ∂K is curvature continuous then M(K) will not be dense in any open set in R3.

Let us assume that ∂K is built by a finite collection of finitely many B-spline patches then
M(K) could be constructed by a union of finitely many medial sets. Each of the latter con-
sisting of points being equidistant to two appropriately chosen boundary parts. Hence each
medial set can be viewed as subset of zero sets defined implicitly by the condition stating that
the difference of the distances of a point in the medial set to the respective parts of ∂K is zero.

This insight can be used to develop strategies to compute (approximately) the medial axis by
assembling it from medial sets (see figure 33). In case the boundary parts are given implicitly
by solutions to polynomial equations, then the medial sets can be described in principle by
implicit polynomial equations as well.

The reconstruction result stated above in equation (1) can be used also to model shape for
families of objects. Clearly in equation (1) the shape of the object depends on the medial axis
set M(K) and the function r.

Intuitively a continuous deformation M(K)t, t ∈ R of the medial axis M(K) = M(K)0
combined with a continuous change of the function r described via a continuous family of
functions r(t, s) : M(K)t → R+ with r(0, 0) : M(K) → R (with r(0, 0) = r) should yield a
continuously deformed family of objects

32

Figure 33: Assembled shape

Figure 34: Continuous deformation of an object

K(t,s) =
⋃

p∈M(K)t

Br(t,s)(p)(p)

The two control parameters t, s indicate that the change of the radius function r(t, s) depends
on the chosen respective domain of definition controlled by the parameter t and for a fixed
domain of definition M(K)t the radius function depends on the parameter s. Figure 34 shows
such a deformation. Note that the medial axis and the radius function are both modified. In
order to present a well defined concept for the continuity of the deformation outlined here we
need some formal requirements due to complications that may occur during the deformation
process. We observe that a continuous (differentiable) deformation of the solid’s boundary
may result in a family of medial axes M(K)t whose homeomorphic type may change during
the deformation process. Such a metamorphosis will occur when a (new singularity) curvature
center of the boundary will meet the family of medial axes occurring during the deformation
process of the solid. See figure 35 for an example. Therefore it makes sense to consider contin-
uously changing families of functions r(s, t) under the provision that for a varying parameter s
the domain of the function family (here the medial axis set M(K)t) should be fixed. This will
allow to consider (for a fixed parameter t0 and a variable parameter s) the family of continuous

center of curvature center of curvature

Figure 35: Non homeomorphic deformation of a medial axis

33

functions r(t0, s) : M(K)t0 → R as a continuous path in a vector space of real valued functions
defined on the compact set M(K)t0 . That vector space will be endowed with an appropriate
topology or norm. Here fixing the domain M(K)t makes it easy to define a distance between
two radius functions r(t0, s1) and r(t0, s2) by

d(r(t0, s1), r(t0, s2)) := max
p∈M(K)t0

{|r(t0, s1)(p)− r(t0, s2)(p)|}

In order to express the continuous deformation of the medial axis family in a formally precise
setting we need to endow the collections of all medial axes with a topology as well. Here it
makes sense to use the Hausdorff-metric dH(·, ·) defined on all compact subsets of the respective
2-dimensional or 3-dimensional domain. Let A,B ⊂ R3 then

dH(A,B) := inf{ε : A ⊆ Nε(B) and B ⊆ Nε(A)}

with
Nε(A) := {y : |x− y| < ε for some x ∈ A}

A continuously deformed family of medial axes (depending on a parameter t) can now be
viewed as a continuous path φ in the Hausdorff space HdH

of compact sets in R2 or R3. Here
we have

φ(t) : R+ → H = {A ⊂ R3 : A compact}

Examples may be given by families of spline patches controlled by continuously moving control
points ci(t), see section 4.4.

7.1 A metric structure for medial modeling

In the previous setting we compared radius functions only in the simplified special case where
they were defined on a common medial axis set. It is desirable to formulate the continuous
change of the medial axis set together with the change of the radius function in a common
topology. For this purpose it is also possible to consider the preceding continuous deformation
concept as a whole being describable within a general setting employing Hausdorff-topology
and spaces of functions endowed with appropriate topologies. For this we define a metric on
the product space built by the product of the two spaces H̃ × F one of them being the above
Hausdorff space

H̃ = {A : A compact subset of R3 ∩Bh(0)}

(H̃, dH) being endowed with the Hausdorff metric dH defined above. The other space F in
the product H̃ ×F is given by the space of all continuous real valued functions defined on the
compact set Bh(0). On the latter space of continuous functions we can define a metric

dS(f, g) := max
x∈Bh(0)

{|f(x)− g(x)|}

for any pair of continuous real valued functions f, g defined on Bh(0).

In this context it is quite important to understand that any continuous function defined on a
compact subset A ⊂ Bh(0) can be viewed as a restriction of an appropriately chosen function

34

Figure 36: Tangential contact of envelopes

being continuous on all Bh(0). This holds since the space Bh(0) ⊂ R3 fulfills appropriate
separation properties, see also T4 axiom of [18].6 Clearly the metric on the product space is
now defined by

dπ((A, r1), (B, r2)) := dH(A,B) + ds(r1, r2)

.

It can be shown that if

dπ((An, rn), (A0, r0)) 0 then
dH((

⋃
p∈An

Brn(p)), (
⋃

p∈A0

Br0(p)(p)) 0

The sequence of objects (each of which modeled by the union of discs) converges in the Haus-
dorff metric to the related limit object. Unions of discs obtained from members of a sequence
of medial axis transforms converge against the discs union of the limit (medial axis transform).
Clearly if ψ(t) = (A(t), rt) is a continuous deformation path in (H×C) with (A0, r0) being the
medial axis transform of a solid, then for the respective discs unions related to ψ(t) we have
Hausdorff convergence towards the solid corresponding to (A0, r0).

1. However note that not every pair (A, r) will define a solid via the union (
⋃
p∈A

Br(p)(p))

2. In case (
⋃
p∈A

Br(p)(p)) defines a solid it may not have A as medial axis and r : A → R

may not be maximal disc radius function.

Examples in the context of statement 1 above may be constructed easily in case we use a
radius function r, that may attain the value zero as then parts of the object might agree with
the axis A that may be chosen deliberately wild. In case we assume that the radius function
r > 0 then we may still have delicate situations where the boundary of a domain obtained
from a union of closed discs may at some points be locally homeomorphic to two arcs having
tangential contact of a single point (see figure 36). Figure 37 shows an example illustrating
the claim in 2. Here

⋃
p∈A

Br(p)(p) defines a solid whose medial axis contains a topological circle

while A does not.

6This consideration shows that any radius function being a continuous function on a compact subset A of
Bh(0) is a restriction of some continuous function defined on the set Bh(0) ⊃ A.

35

Figure 37: Self intersection of envelopes

Figure 38: Construction of the envelope

7.2 Boundary representation in Medial Modeling

So far the Medial Modeling concept has been built on the idea to mold the solid by a union of
discs. It may be preferable to represent the respective solid rather by appropriate boundary
surfaces, see section 5. The latter ones arise quite naturally in the medial modeling context.
Here the boundary surface (curve) is created as the envelope surface of the family of discs
belonging to the specific medial axis transform (see figure 38). Let us assume that the medial
axis is presented locally by a differentiable curve or surface patch being presented by parametric
functions m(u), with the radius function r(u) depending on the parameter u as well.

It is possible to express the envelope surface using functions en(u) in terms of expressions
involving m(u),m′(u), r(u), r′(u). It is also possible to compute en′(u) and the curvature of
the envelope curve. The latter computations need higher order derivative information of the
functions representing the medial axis and of the radius function, refer to [53].

Employing the concepts outlined above different systems have been developed at the Welfenlab
that can compute the envelope surface yielding a boundary representation of a solid whose
medial surface and whose radius function have been given. More precisely the aforementioned
medial modeling system computes for a parametric spline surface patch m(u) : [0, 1]× [0, 1]→
R3 and for an associated radius function r(u) the boundary surface of the corresponding solid
whose medial surface is given bym ([0, 1]× [0, 1]) being a deformed rectangle embedded without
self intersections into R3, see figure 39. Figure 40 illustrates the simplified special case where
m : [0, 1] → R2 is a planar arc and the now two dimensional solid corresponds here to a
planar domain. At those positions where the center points of the maximal discs are located
on the boundary of the medial patch we get the related boundary surface of the solid from
appropriate parts of maximal spheres there. Here the construction (using the modeler) is valid

36

Figure 39: A medial patch inside its associated solid

Figure 40: The 2D case

if the normal segment (joining the point env(u) of the envelope surface with the medial axis
point m(u)) does not meet a curvature center of the point env(u) of the envelope surface prior
to meeting m(u). Using the curvature formula for the envelope surface mentioned above and
some additional criteria then it is easily possible to check if the radius function is admissible.
This means that the previously stated curvature center condition must hold. Under those
assumptions it can be shown that the related envelope surface which we assume to be free of
self intersections yields the boundary surface of a solid⋃

m(u)∈m([0,1]×[0,1])

Br(u)(m(u))

with m([0, 1]× [0, 1]) being the medial axis of the solid being homeomorphic to a 3D-cube.

This result can be generalized to situations where the medial axis is built by a connected finite
collection of patches. Again that collection of patches denoted by A will constitute the me-
dial axis of a solid whose boundary surface is given by the envelope surface obtained via the
disc radius function being defined on the collection of patches. Again we must assume that
the envelope surface has no self intersections and that the above mentioned curvature center
assumption holds for the envelope surface.

The situation where the medial axis is built by a collection of patches is far more complicated
than the case where the medial axis is given by a single patch. Therefore we shall not go into
a detailed discussion on this case in this survey paper. Suffice to say in order to deal with that
complicated case envelope surfaces related to adjacent medial patches are joined along curves.
The geometry of the intersection of medial surface patches (i.e., the angles between intersecting
medial patches at an intersection point) poses conditions that can be used to appropriately

37

blend adjacent envelope surfaces that are related to adjacent medial surface patches. These
blended envelope surfaces are used to construct the boundary surface of a solid containing the
aforementioned medial surface patches.

7.3 Medial Modeling and topological shape

One of the major reasons why the medial axis can be considered a shape descriptor of a solid is
because it essentially contains the homotopy type of a solid because it is a deformation retract
of the solid (refer to [51], [53]). The following topological shape theorem of the medial axis
applies: The Medial Axis M(D) contains the essence of the topological type of a solid D.

Let ∂D be C2- smooth (or let ∂D be 1-dimensional and piecewise C2- smooth, with D ⊂ R2)
Then the Medial Axis M(D) is a deformation retract of D thus M(D) has the homotopy type
of D.

The proof of this theorem shows that it is possible to define a homotopy H(x, t) as explained
below the next figure describing a continuous deformation process of the solid D. This defor-
mation process is depending on the time parameter t. The deformation starts with the solid
being in the figure a rectangle with a circular hole. During the deformation points are moved
along the shortest segments starting at the solid’s boundary ∂D until the segments meet the
dotted Medial Axis. The shortest segments are indicated by arrows in figure 41.

Figure 41: Deformation retract

We describe a homotopy

H(x, t) : (D\∂D)× [0, 1]→ (D\∂D)

such that

H(x, 0) = x ∀x ∈ D\∂D
H(x, t) = x ∀x ∈M(D)
H(x, 1) = R(x) with R : D\∂D →M(D)\∂D

For this we define the homotopy as follows:

H(x, t) := x+ td(x, ψ(x))∇d(∂D, x)

Here d(x, y) denotes the function describing the distance between variable points x, y; ∇d(x, y)
describes the gradient of the distance function d(x, y). ψ(x) is defined as point where the
extension of a minimal join from ∂D to x ∈ (D\∂D) meets M(D).

38

Figure 42: Medial axis of a solid

7.4 Medial Modeling and meshing of solids

In the preceding section on medial modeling we outlined geometrical concepts that were used
to explain the deformation retract property stated in the topological shape theorem. We out-
lined also how to look at the solids boundary surface as an envelope surface that can locally
be presented by a nonsingular parametrization map defined on the medial axis, see [53] for
more details. All those geometric considerations immediately lead to insights that can be used
to construct a meshing partition for a given solid that is naturally associated with the solid’s
medial axis.

We shall outline possibilities to use the medial axis for the meshing of solids by sketching some
examples presented subsequently in several figures further down. In this context some observa-
tions are relevant. In case the solid S is created with the medial modeler say with a medial axis
being diffeomorphic to a square Q then we immediately obtain a quite simple parametrization
of the solid. That parametrization map can be described by a differentiable map defined on a
solid PS containing all points in 3-space whose Euclidean distance to the unit square Q in the
xy-plane is not larger than one. Here we identify the latter unit square with the parameter
space of the medial axis surface. Our definition of the parametrization map is obtained from
the differentiable function env(u) describing the envelope surface (the solid’s boundary surface,
see 7.2). The respective parametrization map of the solid S maps an Euclidean segment in PS
(joining any point u in the interior of Q orthogonally with the boundary of PS) linearly onto
an Euclidean segment in S. The latter segment joins the medial axis point m(u) with one of
the two corresponding boundary points env(u) in S. This segment in S meets the boundary
surface of S orthogonally, see section 7.2. The outlined parametrization map of the solid yields
a differentiable map f from PS onto S with a differentiable inverse f−1. Figures 39 and 42
show the correspondence between the PS and S. In the simplified (lower dimensional case)
the solid S is a 2D-domain with its medial axis being now an arc instead of a 2D-surface. The
maps f and f−1 can be used to map certain convex sets in PS onto convex sets in S. This can
be used to get a partition of an approximation of the solid S into convex subsets. Figure 43
shows examples where engineering objects modeled with our medial modeling system have now
obtained tetrahedral meshes that have been constructed employing the geometrical concepts

39

Figure 43: Meshes obtained from a medial axis representation

Figure 44: Multiple branches in a 3D medial axis representation

as explained above.

It is possible to extend these methods to more complex shapes where several branches of the
medial axis are involved. See for example figure 44 (images from [8]) for the case where three
different medial patches branch along a common line.

7.5 Medial modeling and Finite Element Analysis

Models created in CAD systems are often supposed to fulfill certain physical properties in
addition to mere design aspects. It is for example of interest, how fast an objects breaks under
load or how air or water flows around it. In order to be able to avoid expensive analysis of
real prototypes, a thorough analysis is rather performed on virtual models. For this purpose
differential equations are solved on the virtual model employing commonly a finite element
analysis (FEA). For the FEA the objects need to be tessellated into small elements (for in-
stance triangles or tetrahedra) first. This tessellation/meshing process often only approximates
the geometry of the object at the boundary. After that a differential equation with certain
boundary conditions is solved on the tessellation. If a design optimization is desired, the FEA

40

Create CAD Model

Mesh Generation

FE Analysis

CAD Detail Adjustment

1

2

3

4

Figure 45: Design optimization cycle

solutions even need to be fed back into the CAD engine, to allow the (possibly automatic)
modification towards a better design based on the results of the FEA. See figure 45 for a flow
chart of the design optimization cycle. In contemporary systems and approaches still a huge
gap between the CAD on the one side and the FEA on the other side exists. Future systems
will need to join both areas under a single concept, that does not need the conversion from
the CAD system into the approximative FEA data or the even more complicated integration
of the FEA results back into the CAD engine.

We think the parametrization of an object via its medial axis yields such a common concept,
for it can be used to model, to mesh, to solve differential equations on the exact geometry
and therefore to re-integrate solutions into the design optimization process. A medial meshing
method (see [43] and figure 46) can construct a mesh in the parameter space of an object
with a given medial axis, instead of in the range. Thus the geometry of the object will be
represented exactly. This can be of great advantage when differential equations with complex
boundary conditions are to be solved. If the boundary is only approximated (linearly or with
higher polynomial degree) the representation error at the boundary might yield huge errors in
the FEA solution. These errors can be prevented by transforming the equations and solving
them in the parameter space (i.e. with the exact geometry). See [42] for an example of such
a computation. This approach has for example been used by Hughes ([21]), who represents
the exact geometry (and even the basis functions of the FEA) with NURBS. Hughes approach
(the ”isogeometric analysis”), as well as ours (the ”medial axis parametrization”, maintain
the exact geometry at all refinement levels without the need to communicate with a CAD
description.

Because of its skeletal structure with corresponding thickness information the medial axis rep-
resentation describes an object very intuitively. Hence the transition from the FEA solution
back to the design optimization can be achieved smoothly. The FEA results are obtained
directly on the exact geometry therefore the optimization process can easily adjust local pa-
rameters such as the thickness or the trend of the axis in areas where the object has bad
characteristics (for instance where it might break or crack easily). As an example we will look
at the construction of a 2D longitudinal section through a dental bridge (see figure 47). The
goal is to analyze the stresses for the 2D section first and later to optimize the shape of the
bridge in such a way that the stresses will be minimal.

Since the original 3D bridge object is given as a triangulated surface the 2D cut will be a linearly
bounded polygon. Therefore the medial axis of the 2D domain will have many unnecessary
branches leading into every convex corner. Since most of these branches do not contribute much
to the shape of the bridge (but rather model the unwanted tiny corners in the boundary), they

41

Figure 46: Triangulation and solution of the Poisson equation ∆f = −2 with Dirichlet boundary
condition

can be discarded. The structure will be reduced to only a few significant branches (see figure
48). The level of simplification can be controlled by a parameter.

After this simplification the object is successfully converted into the MAT representation. From
this point on the geometry (especially the boundary) will be represented exactly throughout
the computation and optimization process. Instead of converting an object into the MAT
representation, it is possible to use the medial modeler described earlier to model it manually.
Once an object is represented by its MAT parametrization, a mesh can be constructed in
the parameter space (as described earlier). Figure 49 demonstrates this process for the main
branch of the axis. It can be seen that the generated mesh follows the trend of the axis. The
resolution of the mesh can again be controlled by a parameter.

After the mesh construction a FE-analysis can be performed to find areas with large stress.
A load is applied at the upper side of the bridge and the bridge is fixed at the two anchor
teeth. Figure 50 shows a possible solution where the isolines of the stresses give information
about the stress distribution. With this data it is finally possible to modify the shape of the
bridge. It can for example be thickened in the middle or at the transition to the anchor teeth.
A recomputation of the stresses shows, whether the shape modification has led to a better
distribution of the load.

8 Attributes

Sometimes there is a need to store additional information associated with a geometric model.
We have already seen such an example: topological information in a boundary representation
such as adjacency information.Another example might be the case where additional data has
to be stored together with a model, that enriches the information but can somehow be pre-
computed. For example in a data base containing several hundreds of models each of them

42

Figure 47: 3D views and 2D section of a dental bridge

Figure 48: Simplified MAT of the bridge polygon (thick green line) with some unnecessary branches
(thin red lines)

has to be identified with a unique key (see [43, 39]). These keys can be stored with the models
thus making tasks like finding or comparing particular objects easier. There is a variety of
other data that can be associated to a model, we will refer to all of these as attributes of the
model. There can be attributes of physical origin, which alter the reception of the object by the
user, or logical attributes, which relate the object to other objects or data. Physical attributes
include photometric, haptical and other material constraints, such as elasticity or roughness.

8.1 Textures

If attributes are quantifiable (which is true for most of the physical attributes) then they are
often specified by textures (i.e., functions that relate surface points to certain quantities of the
attribute). Formally a texture is defined by:

t : M → V

where M is the set of points of the model and V is the set of possible values of the texture.
M can consist either of the entire volume of the model or only the surface points depending
on the nature of the attribute.

43

Figure 49: Mesh, generated only for the main branch

Figure 50: Example of iso stresses of a dental bridge

Normally textures are implemented using two maps

p : R2 →MS

and
v : R2 → V

with p being a parametrization of the surface points MS . Then the texture t is given by

t := v ◦ p−1

Note that in practice one does not need to compute the inverse of p since the coordinates in
parameter space (here identical to the texture coordinates) are known during the process of
painting. Nevertheless often it is rather difficult to find appropriate (non singular) mappings
from the plane onto a given surface7. This results in distortions of the texture near the
singularities. To avoid this, one can use solid textures (see [38] and [40]). Here the map v is
defined as

v : R3 → V

and thus t := v since M ⊂ R3. Note that while ordinary textures are implemented as pixel
images, solid textures are represented by voxel spaces (cf. section 3). This approach is slightly
faster and avoids distortions induced by the parametrization, on the other side it consumes far
more memory. Furthermore ordinary 2D textures can often easily be derived from photographs
whereas this is much more complicated for solid textures (see [14]). Modern graphics hardware
supports mapping solid textures to surface models using so called 3D textures.

7In fact for most surfaces it is impossible as stated by the Hopf index theorem

44

Figure 51: Photometric marble texture

Figure 52: Bump-map on a sphere

Solid textures are easily applied in areas, where the texture data itself result from real world
data, for instance a spatial scan of a material density or the like. Nevertheless modeling a spa-
tial texture can be intricate. The approach presented in [6] shows how to combine traditional
modeling techniques like CSG with the theory of distance functions to model arbitrary 3D
textures. For each textural attribute (here referred to as feature) its extremal sets are modeled
as separate solids, then the gaps in between are filled via distance interpolation methods. A
slightly different and more general approach can be found in [22] and [28]. These techniques are
commonly referred to as heterogeneous or inhomogeneous modeling. The texture can then be
kept in its quasi-continuous representation to benefit from the representations superior analytic
properties, or it can be easily converted to a voxel space representation for faster rendering etc.

The most common use for textures are photometric textures (i.e., maps that modify the color
of a surface point). Figure 51 shows a sphere, a photometric texture resembling marble and
the sphere ”wrapped” with the texture.

Note that the use of textures is not limited to color (although this is assumed widely in the
literature), other common applications include bump maps which are vector fields that alter
the direction of the point normal (and thus alter the appearance of the surface locally near
the point). Figure 52 shows a texture and the result of bump-mapping it onto a sphere. Note
that not the sphere’s geometry itself is changed only the face normals.

45

Textures are especially useful to model micro scale aspects of surfaces where detailed polyhedral
modeling is too costly. For example a micro scale roughness of a stone surface can more
efficiently be simulated by photometric and haptical textures ([1]) than by subdividing the
(macro scale) smooth surface into tiny triangles. Furthermore material properties like elasticity
or particle density can be represented by 3D textures. Rather than simulating the position of
single, individually invisible particles, a quasi continuous texture is applied to the model space.

8.2 Model parameters

A special class of attributes are the model parameters. As we have seen in the preceding
chapters, most model representations have a set of parameters associated with them, for ex-
ample the set of control points for a spline patch. Sometimes it makes sense to view some of
these parameters as attributes. Additional parameters can be added to most models, these
include Euclidean motion matrices, stiffness constraints and the like. It is then sometimes more
appropriate to allow these parameters to change over time, making them effectively attached
functions rather than constants. These techniques lead to the theory of physics-based modeling,
refer to [34] for a comprehensive overview of this topic.

8.3 Scripts

Examples of logical attributes are scripts. These are parts of code or methods that can be
invoked when certain constraints of the model are met. A 3D object can have scripts attached
that react to user interaction, when the object is selected in an interactive scene. Another
example would be a script that is activated on collisions of the object with other parts of the
scene. Scripts are especially useful in applications like physical modeling, where the modifica-
tion of one object may require also modifications to associated objects. Rather than attributing
these dependent objects to the calling object passively and letting the main program do the
work, the tasks are carried out directly by the objects involved.

The idea of scriptable attributes has now been around for several years without finding a broad
acceptance. Nevertheless there have been some prototype implementations like the Odyssey
Framework (see [10], [13]).

9 Outlook and concluding remarks

A theoretically and practically difficult topic that we barely touched upon in this paper con-
siders aspects related to the analysis and computation of singularities of geometric loci. Those
singularities may come up on various occasions. They quite often concern the structure of
geometrically defined solutions of non-linear equations being crucial to define precisely the
local and global topological structure of solids and their parts. Those singular sets very natu-
rally come up when we are dealing with surface intersections that may be related to Boolean
operations carried out for solids bounded by surfaces (see [26], [37]). Similar problems also
cause major difficulties in the context of CSG modeling, see section 6 and [19]. Simply spoken
whenever a set under consideration has not the structure of a topological or of a differentiable

46

manifold then it will have a singular structure at some locations. For an important class of
singular sets this can be rephrased by saying singular sets in the Euclidean space cannot be
represented by solutions of equations corresponding to some differentiable functions whose dif-
ferential has a maximal rank at all points belonging to the ”singular set” under consideration.
Computations and constructions related to the medial axis in section 7 of this paper often
contain as their most difficult part computations and representations of the singular subsets
of the medial axis (see section 6). In general analyzing and understanding the mathematical
structure of singular sets is sometimes quite difficult and may require the use of sophisticated
and fairly advanced mathematical methods related to singularity theory. The mathematical
and computational trouble caused by mathematically singular sets is enhanced by an addi-
tional fundamental problem in this context. One of the crucial difficulties that we encounter
in geometric modeling is caused by the fact that all our models are usually represented in a
discrete space and they only use points on a finite 3D-grid having a limited resolution. This
implies that even in cases where we are dealing with solids, bounded by surfaces consisting of
triangular facets only, we still may have difficulties carrying out Boolean operations. Those
difficulties are caused by the fact that for certain geometric configurations we cannot prop-
erly compute the intersection set of two triangular facets. The latter problem may result in
a (wrong) decision assuming the intersection point to be falsely classified inside or outside of
some triangular facets. In the end all this may contribute to major topological inconsistencies
and contradictions causing a failure of the system. In our view the state of the art in geomet-
ric modeling related to all of the aforementioned areas still needs substantial improvements by
innovative concepts. Those new concepts to be developed should benefit from ideas inspired
by advanced mathematical concepts from computational differential geometry and from sin-
gularity theory, cf. the pioneering work of the late [47], [11], [3], [4]. New exciting research by
[27] uses the medial axis concept (section 7) in combination with ideas resting on a singularity
analysis of distance wave fronts as to develop new methods for 3-dimensional shape represen-
tation that are applicable in a context of discrete point sets.

Another currently very active area related to geometric modeling is dealing with data compres-
sion. Often huge amounts of data points may arise from measurements or from construction
procedures when large objects are constructed by many patches. Those collections of many
patches need to be simplified, reduced or approximated by a surface whose description needs
far less data (see [9]). However this approximation often must fulfill some specified accuracy
requirements, for example, concerning placement. Furthermore quite often we must meet some
topological conditions for the approximating surface not to have self intersections and singu-
larities. Data corresponding to evaluation of continuous functions defined on geometric 2D or
3D objects may be obtained by measurements or by time consuming computational procedures
such as those used in the area of differential equations. In all these cases one may encounter ex-
tremely large data sets that are far beyond the size that can be handled on current computers.
In those situations one appreciates good approximation methods allowing an efficient approx-
imation of the given data (or of that respective function). The description and evaluation of
the approximation should need far less data than the original data set. Furthermore it should
be possible to process the approximation data (substituting the original ones) efficiently on the
computer for the particular computational purpose. This survey has been touching the basics
of related topics for instance in the sections 4.4 and 4.7. Suffice to say that new concepts
of wavelet and multiresolution theory appear to provide powerful tools that currently drive

47

the progress in the respective fields that may be considered to belong to the subject of data
compression (see [31] and [46]). It should be mentioned that very recent innovative efforts in
the area of data compression employing new methods from a so called discrete Morse theory
benefit from concepts that have been developed in the classical areas of modern global differ-
ential geometry and differential topology, see [15] and [35]. In the meanwhile there even exists
a new field called ”computational topology” presenting fundamental research for geometric
modeling that has been inspired strongly by methods and questions and ideas stemming from
the classical area of topology and differential topology (for instance [2]).

Historically geometric modeling has been developed as a basic science for Computer Aided
Design. In its early days the latter field has been employing descriptive geometry and Bezier
geometry to design the shape of objects electronically instead of using blue prints created in
technical drawings with the help of compasses and ruler. Meanwhile engineers want computer
aided modeling systems whose capabilities go far beyond Computer Aided Design. Those
systems shall not only describe the shape of objects but should allow also the simulation of
various physical properties of the design object. This essentially implies that the computer
system must be capable of solving partial differential equations (PDEs) defined on the ge-
ometry of the designed object. For this purpose we may need systems allowing very rapidly
(ideally in real time) a good automated meshing procedure of the geometric design object. The
resulting mesh must be appropriate for the approximate solution of the respective PDE used
to analyze some properties of the designed object. Future geometric modeling and meshing
systems will have to address those important needs. Those systems may therefore integrate the
design and meshing functionalities in combined systems as it has been, for example, suggested
in our medial modeler system described in section 7.4. In order to handle the combined needs
of designing shape as well as designing the physics of objects it appears to make sense that
the different engineering communities doing geometric modeling research, meshing research
and computational engineering (PDE) research will cooperate more closely in the future. This
collaboration should initiate learning processes where each community should profit from the
knowledge available in the other communities.

Overall assessing future developments we think that new developments in geometric model-
ing and also in the aforementioned areas will increasingly employ concepts and insights from
singularity theory, from local and global differential geometry and from advanced (singular)
wavelet theory. The latter areas will help to provide mathematical concepts and tools being
relevant to analyze and compute delicate singularities that may for instance be encountered
analyzing dynamical processes related to various types of PDEs defined in the context of a
physical analysis of the design object.

Finally we present a remark that corroborates our statement that new developments in geo-
metric modeling and related fields benefit from using synergetically advanced concepts from
global and local differential geometry. Geometric modeling is primarily involved with shape
construction but it is also dealing with the area of shape interrogation and thus related to
shape cognition of 3D and 2D objects. Shape cognition is concerned with methods identifying
automatically the shape of an object in order to check if the shape design exists already in a
data base containing shape design models being, for example, protected by some copyright.

48

We want to point out that recent advances on new strong methods concerning shape cognition
benefit also from advanced concepts of global and local differential geometry such as singular-
ities of principal curvature lines called umbilics, see [32], [23] and [24].

The authors like to thank Philipp Blanke and Patrick Klie being team members of the Welfen-
lab for carefully proof reading this paper.

49

References

[1] Allerkamp D., Böttcher G., Wolter F.-E., Brady A.C., Qu J., Summers I. R. A Vibrotactile
Approach to Tactile Rendering, The Visual Computer, 23(2):97 - 108, 2007.

[2] Amenta N., Peters T.J., Russell A.C. Computational topology: ambient isotopic approxi-
mation of 2-manifolds, Theoretical Computer Science, Volume 305, Issues 1-3, Pages 3-15
, Aug 2003

[3] Arnold V.I., Gusein-Zade S.M. and Varchenko A.N. Singularities of differentiable Maps,
Vol. I, II, Birkhauser, 1985.

[4] Arnold V.I. Singularities of Caustics and Wave Fronts. Kluwer, 1990

[5] Baumgart B. A polyhedron representation for computer vision. National Computer Con-
ference, pp. 589–596, AFIPS Conf. Proc., 1975

[6] Biswas A., Shapiro V. and Tsukanov I. Heterogeneous Material Modeling with Distance
Fields. Technical Report, University of Wisconsin-Madison, Mechanical Engineering De-
partment, Spatial Automation Laboratory, SAL 2002-4, June 2002

[7] Blum H. Biological Shape and Visual Science. Journal of Theoretical Biolgy, 38, pp. 205-
287, 1973

[8] Böttcher G. Medial Axis and Haptics. Master’s Thesis, Leibniz Universität Hannover,
Oktober 2004.

[9] Bremer P.T., Hamann B., Kreylos O., Wolter F.-E. Simplification of Closed Triangulated
Surfaces Using Simulated Annealing, Proceedings of the Fifth International Conference on
Mathematical Methods for Curves and Surfaces, Oslo, July, 2000, Mathematical Methods
in CAGD, pp. 45-54, Vanderbilt University Press, Tennessee 2001.

[10] Brockman J.B., Cobourn T.F., Jacome M.F. and Director S.W. The Odyssey CAD Frame-
work. IEEE DATC Newsletter on Design Automation, Spring 1992

[11] Bruce J.W. and Giblin P.J. Curves and Singularities. Cambridge University Press, Second
Edition, 1992.

[12] Catmull E. and Clark J. Recursively generated B-spline surfaces on arbitrary topological
meshes. Computer Aided Design, 10(6):350-355, 1978.

[13] Cobourn T.F. Resource Management for CAD Frameworks. Dissertation Carnegie Mellon
University, May 1992, CMUCAD-92-39.

[14] De Bonet J.S. Multiresolution Sampling Procedure for Analysis and Synthesis of Texture
Images. ACM SIGGRAPH, ACM Conf. Proc., 1997

[15] Edelsbrunner H., Harer J. and Zomorodian A. Hierarchical Morse Complexes for Piecewise
Linear 2-Manifolds, Symposium on Computational Geometry (2001)

[16] Farin G. Curves and Surfaces for Computer Aided Geometric Design: a practical Guide
(third edition). Academic Press, San Diego, 1993

[17] Foley J.D., van Dam A., Feiner S.K. and Hughes J.F. Computer Graphics: Principles and
Practice (second edition in C). Addison-Wesley, Reading, 1996

50

[18] Hocking J.G. and Young G.S. Topology Dover Publications Inc., New York, 1988

[19] Hoffmann C.M. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann, San
Mateo, 1989

[20] Hoschek J. and Lasser D. Fundamentals of Computer Aided Geometric Design. A K Peters,
1993

[21] Hughes T. J. R. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry
and mesh refinement. Comput. Methods Appl. Mech. Engrg., Vol. 194, pp. 4135–4195,
2005

[22] Jackson T. R., Cho W., Patrikalakis N. M. and Sachs E. M. Analysis of Solid Model Rep-
resentations for Heterogeneous Objects. JCISE: Journal of Computing and Information
Science In Engineering, Vol.2, No.1 Page1-10, March 2002, ASME Transactions.

[23] Ko K.H., Maekawa T., Patrikalakis N.M., Masuda H. and Wolter F.-E. Shape Intrinsic
Properties for Free-Form Object Matching ASME Journal of Computing and Information
Science in Engineering (JCISE) V(3)N(4), December, 2003, pp. 325-333

[24] Ko K.H., Maekawa T., Patrikalakis N.M., Masuda H. and Wolter F.-E. Shape Intrinsic
Fingerprints for Free-Form Object Matching Prodeedings of the Eighth ACM Symposium
on Solid Modeling and Applications. pp. 196-207. Seattle, WA, June 2003.

[25] Koenderink J.J. Solid Shape. MIT Press, Cambridge, 1990

[26] Kriezis G.A., Patrikalakis N. M. and Wolter F.-E. Topological and Differential-Equation
Methods for Surface Intersections Computer Aided Design, vol.24 (1): 41-55, Jan. 1992.

[27] Leymarie F.F. Three-Dimensional Shape Representation via Shock Flows, Ph.D. thesis ,
Brown University / Division of Engineering / Providence, RI, USA May 2003

[28] Liu H., Maekawa T., Patrikalakis N. M., Sachs E. M. and Cho W. Methods for Feature-
Based Design of Heterogeneous Solids. Computer Aided Design, vol. 36 (12): 1141–1159,
Oct. 2003.

[29] Loop C. T. Smooth Subdivision Surfaces Based on Triangles. Master’s Thesis, Department
of Mathematics, University of Utah, August 1987

[30] Lorensen W. and Cline H. Marching cubes: a high resolution 3D surface construction
algorithm. ACM/SIGGRAPH Computer Graphics, 21(4), pp. 163-169, (1987).

[31] Mallat S.G. A Wavelet Tour of Signal Processing, Academic Press, San Diego, 1998.

[32] Maekawa T., Wolter F.-E. and Patrikalakis N. M. Umbilics and Lines of Curvature for
Shape Interrogation, Computer Aided Geometric Design, Volume 13, Issue 2, March 1996,
Pages 133-161

[33] Mäntylä M. An Introduction to Solid Modeling. Computer Science Press, Rockville, 1988

[34] Metaxas D.N. Physics-Based deformable Models: Applications to Computer Vision,
Graphics and Medical Imaging. Kluwer Academic Publishers, Boston, 1997

[35] Milnor J. Morse Theory, Princeton Univ. Press, Princeton, NJ, 1967.

51

[36] Nowacki H., Bloor M.I.G. and Oleksiewicz B. Computational Geometry for Ships. World
Scientific, Singapore, 1995

[37] Patrikalakis N.M. and Maekawa T. Shape Interrogation for Computer Aided Design and
Manufacturing. Springer, Berlin, 2003

[38] Peachey D.R. Solid texturing of complex surfaces. SIGGRAPH 85., pp. 279-286.

[39] Peinecke N. Eigenwertspektren des Laplaceoperators in der Bilderkennung. Books on De-
mand GmbH, Norderstedt, Germany, 2006.

[40] Perlin K. An image synthesizer. SIGGRAPH 85., pp. 287-296.

[41] Piegl L. and Tiller W. The NURBS Book. Springer, Berlin, 1995.

[42] Reuter M., Wolter F.-E. and Peinecke N. Laplace-Beltrami Spectra as Shape DNA of
Surfaces and Solids. Computer-Aided Design 38 (4), pp.342-366, April 2006.

[43] Reuter M. Laplace Spectra for Shape Recognition. ISBN 3-8334-5071-1, Books on Demand
GmbH, Norderstedt, Germany, 2006.

[44] Samet H. The quadtree and related hierachical data structures. ACM Comp. Surv., 16(2),
June 1984, pp. 187-260.

[45] Sherbrooke E. C. and Patrikalakis N. M. Computation of the Solutions of Nonlinear Poly-
nomial Systems Computer Aided Geometric Design, 10(5), 1993, pp. 379-405.

[46] Stollnitz E.J., DeRose T.D. and Salesin D.H. Wavelets for Computer Graphics: Theory
and Applications. Morgan Kaufmann, 1996

[47] Thom R. Structural Stability and Morphogenesis: An Outline of a General Theory of
Models. Benjamin-Cummings Publishing, Reading, Massachusetts, 1975.

[48] Warren J., Warren J. D. and Weimer H. Subdivision Methods for Geometric Design: A
Constructive Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2001.

[49] Wolter F.-E. Distance Function and Cut Loci on a Complete Riemannian Manifold. ARCH
MATH 32 (1): 92-96, 1979.

[50] Wolter F.-E. Cut Loci in Bordered and Unbordered Riemannian Manifolds Ph.D. Disser-
tation, Technical University of Berlin, Department of Mathematics Berlin 1985

[51] Wolter F.-E. Cut locus and medial axis in global shape interrogation and representation.
MIT Seagrant Report, 1992

[52] Wolter F.-E. and Tuohy S.-T. Approximation of High-Degree and Procedural Curves.
ENG COMPUT 8, (2): 61-80 Sept. 1992.

[53] Wolter F.-E. and Friese K.-I. Local and global geometric methods for analysis interroga-
tion, reconstruction, modification and design of shape. Proc. CGI 2000, June 2000, pp.
137-151.

[54] Yamaguchi F. Curves and Surfaces in Computer Aided Geometric Design. Springer,
Berlin, 1988

52

[55] Zorin D. Subdivision and Multiresolution Surface Representations. PhD Thesis, Caltech,
Pasadena, 1997

[56] Zorin D. and Schröder P. (Eds.) Subdivision for Modeling and Animation. ACM SIG-
GRAPH’2000 Course Notes, No. 23, July, 2000

53

	History and Overview
	Architecture of modeling systems
	Voxel representation
	Octrees

	Surface patches
	Polygonal patches
	Parametric surfaces
	Trimmed surfaces
	Spline surfaces
	B-splines and NURBS
	Basis functions and knot vectors
	B-spline Curves
	B-spline Surfaces and Solids
	NURBS

	Subdivision surfaces
	Multiresolutional approaches

	Boundary representation
	Planar models
	Half-edge data structure

	Constructive solid geometry
	Medial modeling
	A metric structure for medial modeling
	Boundary representation in Medial Modeling
	Medial Modeling and topological shape
	Medial Modeling and meshing of solids
	Medial modeling and Finite Element Analysis

	Attributes
	Textures
	Model parameters
	Scripts

	Outlook and concluding remarks

