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5.1 Introduction

Biological processes in the human body interact continuously in order to sustain
physiological function. A complete study of a phenomenon in human physiology
requires merging data from several measurements, not only from different domains
of knowledge (chemistry, biology, physics, and medicine) but also across different
spatiotemporal scales. As an example, a musculoskeletal disease of the human knee
affecting themotion (behavior scale), can be seen on aCTorMRI scan (organic scale)
and has its cause on cellular or evenmolecular level. To simulate the related processes,
different temporal scales have to be taken into account as well. Those time scales
range from seconds on the behavioral level to microseconds on the cellular scale.

However, merging of data alone is not enough to obtain valuable knowledge.
Visualization that generates images from these measurements is necessary to help
scientists understanding complex relations between modalities and spatiotemporal
scales. Multiscale visualization deals with the question: “How can visualization help
in extracting information from several scales that cannot be attained or understood by
traditional techniques?” More specifically, multiscale visualization will also support
extracting information that cannot be obtained or understood from evaluating data
from a single scale alone or even from different scales without having the flexibility
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Fig. 5.1 Multimodal and multiscalar requirements in the visualization of biomedical data

to match and compare the data according to criteria defined by the scientist using the
system.

Visualization is the primary channel through which biomedical data is communi-
cated. In this work, interaction is a way to control the flow of this channel. It allows
the user to decide in real-time on visualization contents that are to be presented. The
user queries for data through interaction methods, and receives semantic meaningful
results through visualization. Thus, visualization combined with and controlled by
user interaction constitutes in the given context the complete tool for biomedical data
exploration.

The next section discusses the complexity of biomedical data and the require-
ments of a multiscale environment. The third section proposes current lines of work
to design an efficient scientist-centric visualization tool. Current multiscale visual-
ization techniques and the foundation of the Human Computer Interaction (HCI)
field are described in the fourth section. Finally, an overview of strategies and lines
of work on multiscale visualization and interaction with biomedical data is given in
the last section.

5.2 Visualization of Biomedical Data

The presentation of image data has become more challenging due to the increasing
complexity of biomedical datasets. Here it is necessary to integrate all data from dif-
ferent modalities in the same reference system for a specific domain of knowledge
(multimodal requirement). Furthermore, it is also necessary to consider the merg-
ing of several domains across scales (multiscalar requirement). Both of the afore-
mentioned requirements are crucial in the biomedical environment as illustrated in
Fig. 5.1.

The complexity of data is due to the following factors:

• Variety of sources: Biomedical data can be acquired by a broad range of modal-
ities, e.g. CT, MRI, motion capturing or microscopy. Even sources of the same
modality might not share a common standard. Currently, no standardization of for-
mats in microscopy imaging exists. This leads to a loss of metadata during format
conversion, or problems by organizing images from time-lapse experiments [1].
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Fig. 5.2 Example of a knee joint multiscale dataset: (a) Cross-section of knee CT scan, (b) micro-
CT slice of cartilage tissue, (c) 3D reconstruction of micro-CT scan of cartilage tissue, (d) histo-
logical image of cartilage, (e) schematic of extracellular components of cartilage tissue, (f) JMol
visualization of aggrecan particle [7]. Images (b, d) and dataset (c) courtesy of 3B’s Research
Group. Dataset (a) courtesy of OsiriX Project [8]

• High-dimensional image data: Images carry more information in the form of
additional dimensions (beside x- and y-resolution): e.g. time, space and channels.
For instance, multispectral imaging (acquisition of spectrally resolved information
at each pixel of an imaged scene) has become widely offered by microscopy
manufacturers [2].

• Amount of data: Massive datasets from large scale experiments are difficult to
manage due to the memory limitations. Even though the amount of available
memory is increasing and out-of-core techniques have been developed [3], data
memory requirements increase due to a more detailed data collection. This creates
another challenge: representing datasets in a user intuitive manner is more difficult
in relation to the increasing amount of data.

3D reconstruction and projection techniques are important when dealing with
high-dimensional image data. This is illustrated in an example of tomographic min-
eralogical data analysis [4]. The software used (YaDiV [5]) allowed the experts from
mineralogy to understand the geometric spatial structure intuitively, which was not
observed in the respective 2D slice images used before. This investigationmethod can
also be applied in the context of biomedical multiscale visualization, where recon-
struction of micro-CT data of cartilage clearly exhibits complicated spatial tissue
structures (Fig. 5.2c).

The multimodal requirement is born by this variety of data properties: multiple
imaging sources provide vast amounts of data with heterogeneous dimensionality
that should be merged. This requirement is needed to help physicians and scientists
of the same domain to interpret this wide range of collected data [6].
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For example, the extraction of information from both the hard and the soft tissues,
acquired with different imaging modalities (CT and MRI), is essential in an anatom-
ical study. It can be used to obtain information in many musculoskeletal clinical
applications [9].

On the other hand, the multiscalar requirement, i.e. mixing information between
scales, is needed because systems and pathologies in the human body are often
hierarchical. Events on the cellular scale propagate upwards to the tissue or organ
levels (Fig. 5.3). In some cases, a complete evaluation of medical risks can only be
obtained if data from different scales is available [10].

For example, musculoskeletal diseases depend on several factors from multiple
scales. For a complete study, information sources from different scales have to be
considered. Specifically, studies of cartilage [11] have shown the impact of extra-
cellular matrix (molecular) components on macroscale elements. The degradation
of their nanoscale structure greatly influences the behavior of the tissue. This causes
degeneration with age, injury, or diseases such as osteoarthritis. Sources of infor-
mation range from cross-sectional histology at the cellular level, to body motion
captures at the behavior scale, with additional data on the tissue and organ level
in between (Fig. 5.2). Research projects as of [12–14] prove that the integration of
multiscale data can lead to deeper understanding with practical consequences.

Another example is the study of the cardiovascular system. In [17], it is shown
that the multiscale conception of the human blood circulation system, from mole-
cular to organ level, can enhance the understanding of diseases, such as vascular
atherogenesis.

Until today no major advances have been made in multiscale biomedical visual-
ization, except in the domains of genomics and proteomics [18]. Hence,many authors
called for efforts to create a multidisciplinary work in an integrated visualization [19,
20] of biological data: “the revolution in biological data visualization hasn’t started
yet” [21].

5.3 Visualization Helps Understanding Science

Scientific visualization [22] presents numerous types of data that are inherently spatial
in a visual form. It typically aims to represent data based on physical measurements
e.g. obtained via acoustic waves (sonography) or often via electromagnetic waves
including e.g. digital X-ray - and CT-imaging as well as light microscopy. Electronic
microscopy uses electron beams to illuminate a specimen producing a magnified
image. Most of the aforementioned imaging techniques already use sophisticated
mathematical computations evaluating the respective physical measurements in an
initial processing step needed (to prepare further steps) for presenting an appro-
priate visualization of the respective spatial data. Those computations may include
methods from signal processing such as Hilbert transform for sonography imag-
ing or Radon transform for CT-imaging [23, 24]. Further processing steps may use
more mathematical methods e.g. for segmentation of CT-volume data separating
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Fig. 5.3 Different grades of osteoarthritis disease obtained using (a) microscopic
imaging [15] (b) MRI imaging [16], (Fig. 5.3a reprinted from Osteoarthritis and
cartilage, vol. 13, no. 11, Kleemann, R. U. et al., Altered cartilage mechanics
and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade),
pp. 958–963, 2005, Copyright © 2005 OsteoArthritis Research Society International, with
permission from Elsevier.) (Fig. 5.3b reprinted from Arthritis & Rheumatism, vol. 52, no. 11,
Loeuille, D. et al. Macroscopic and microscopic features of synovial membrane inflammation in
the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity,
pp. 3492–3501, Copyright © 2005, American College of Rheumatology, with permission from
Wiley Online Library.)

and indicating different biological structures. The initial computational evaluation
of physical measurements for visualization of small scale molecular data [25] as
well as the theoretical concepts and subsequent additional computations needed for
processing the respective data may be even more complicated than they were in
case of the preceding large scale visualization problems. The molecular visualiza-
tion will result in visualizing certain structural aspects of molecules being consistent
with our current scientific physico-chemical model of the respective molecular and
atomic structures. One might still claim that the latter small scale visualization is
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still attempting to present inherently spatial physico-chemical data in visual form.
However the visualization obtained in this context reflects quite abstract model based
information supposed to (indirectly) present some data and some properties of the
respective molecules. One particular example of this is the visualization in Fig. 5.2f
showing an artificial 3D-illustration of molecules illustrating e.g. the different atoms
involved and their bondings.

One might go one step further, and could consider information visualization pre-
senting (abstract semantic) data that is purposely not inherently of spatial origin, but
is rather using a spatial representation of information (e.g. via trees or graphs) taking
advantage of human’s visual perception capable to see and understand a lot of infor-
mation at once. Indeed the field named information visualization [26] is referring to
this aforementioned type of visualization. The abstract nature of the latter informa-
tion data requires the selection of an appropriate spatial representation and also the
transformation of the information data into that spatial representation. Only after that
transformation into a spatial presentation being graphically intuitively accessible it
is possible to get benefit from this data as a means to amplify cognition.

Research in visualization is complex by itself, because it can be approached from
different points of view. Many algorithms, techniques, and interactions have been
explored and improved, but fundamental theories are insufficient [27, 28]. Many
innovative biomedical tools provide visualization that integrates data from multiple
sources, and even can interoperate with other tools or be embedded into web pages.
An overview of examples has been presented in [29].

Although huge developments in visualization research have been done, only lim-
ited attention has been given to methodologies that provide understanding to users,
because current approaches are not user-centric. Visualization depends on several
aspects, such as the properties of the data, human physiological factors or physi-
cal characteristics of the display device. Furthermore, the use of visualization for
understanding science should not make a distinction between scientific and infor-
mation visualization [30, 31]. Figure5.2f is a clear example where visualization is
based both on physical measurements and abstract structure of molecule. Effective
visual abstractions based on information visualization can help the representation of
complex data in large-scale biomedical systems.

Thus, certain current lines of work have paid more attention to all these aspects
than creating new techniques or algorithms. The design of a biomedical visualization
tool should take into account the user experience (see Sect. 5.3.1) and the scientific
meaning (see Sect. 5.3.2) as required. The features summarized in this section elim-
inate the gap between the visualization research community and the scientist as a
user of a visualization system.

5.3.1 Improving the User Experience

Taking User Experience (UX) into account is an established procedure in the design
of any man-machine-interface. These interfaces are not designed by the will of the
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programmer (or company), but based on user feedback, e.g. if the user calls a certain
feature of the software very frequently, it will get a hotkey.

Although UX could be applied universally to every visualization system, these
features are gaining more importance in the scientific visualization context [27].
They consist of the following aspects:

Perception Factors

Users are part of the visualization process. Thus, human factors should be strongly
considered in order to improve the visualization design. A faithful representation is
not the only goal. Visualization can go beyond incorporating different features that
human perception can decode; it might take advantages of the mechanisms in the
human visual system.

• Use of color: Considerations of color theory (distance, linear separation, cat-
egories) can help choosing colors that facilitate understanding [32, 33]. As an
example, red color can help to bring the user attention to an important feature, e.g.
abnormalities in a biomedical scan.

• Texture: The use of perceptual texture elements also known as pexels, character-
ized by color, density, height, orientation or randomness can help users in shape
perception [33].

• Pre-attentive processing: A limited group of visual features can be processed
unconsciously by obtaining information from the visualization without the need
for focused attention, independent of the number of data elements and the display
size [32].

Other relevant aspects are shape, size, contour, sharpness and the use of 3D primitives
[34]. However, these features together are not always favorable: a combination in a
specific application should be evaluated.

Innovative and Standardized Representations

Visualizing new types of data or supporting new analysis tasks accelerates the appear-
ance of innovative representations. The problem for the users is the lack of standards
in representations. Walter et al. proposed both innovative and standardized represen-
tations [1]. Perception of information not only depends on how the visualization is
designed, but also on the viewer’s understanding of the given symbol system, e.g.
hard tissues are represented with white color, soft tissues black. This results in two
aspects:

• educating viewers may improve their data understanding (helping them to gain
new insights) [35] and

• the usability could be enhanced by the adoption of standards in representation.
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Frequent Evaluation During the Design Process

An important instrument for UX is user study [33]. These studies require a good
experimental design,which is often difficult to achieve.Aflawed experimental design
(or wrong execution) may lead to results that are not helpful or—even worse—lead
to wrong conclusions.

Working closely with users is the best way to develop a visualization tool. Thus, it
is important that experts from the field (here: biomedical science) should participate
in the studies. Is the visualization really giving the user the information he needs,
e.g. at a certain simulation step? Or is it distracting him with too many aspects?
In order to provide concrete usability to the visualization, a frequent evaluation has
to be done during the design cycle, e.g. by testing isolated and specific usability
hypotheses [34].

5.3.2 Bringing Scientific Meaning to Visualization

Visualization can be a powerful tool in the understanding of data and its context. In
this chapter we will distinguish between scientists in general (“users”), who work on
a specific topic and visual researchers, who research data visualization and closely
work together with the general scientists. Scientists and visualization researchers try
to give meaning to visual data and to gain systematic insights into many domains [1].
For this purpose, researchers of scientific visualization need to create field-centric
tools focused on the scientific process of data analysis [27, 36].

Visualization Suitability for Data Analysis

Scientists make connections between the quantitative image description and its (bio-
medical) meaning. For this purpose, they need to focus on identifying meaningful
features and on exploring potential relationships [1]. Visualization systems are suit-
able tools for exploratory data analysis. The visualization must be highly linked to
the type of information, and show relevant image-based data in an intuitive manner,
satisfying the scientists’ inquiries.

Visualization software tools for analyzing data can be difficult to learn due to
the complexity of data and task. To simplify the learning process visualization tools
should focus on the following features:

• Integration: Merging of tools in the same program as long as it is useful. Elimina-
tion of unnecessary navigation reduces manual interaction times, however increas-
ing application complexity too much can lead to user confusion.

• Interoperability:Complete integration in the same software is almost impossible.
If a data format is not supported, it should at least be possible to process or convert
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it with an external program, as described in [13]. Thus, interoperability requires
clear software protocols and the support of common data formats.

• Navigation aids: In a complex (multiscale) visualization, it is easy to lose track of
the current (spatiotemporal) position and context. Navigation aids like an overview
map, colored floating labels or a zone tracker can help to keep track of the zone
(or scale) the user is currently exploring [37]. The starting screen of such a system
should enable the navigation across all the structures.

Most progress has been made in the field thanks to the incorporation of software
usability principles. However, the achievement of these improvements has been a
slow process; working on usability enhancements is less rewarding in science than
inventing new ideas and approaches [21].

Challenges in Representing Small Structures

Biological data gathered on nanoscale level is often large in size and resolution. Addi-
tionally, it usually does not have a naturally understandable representation. Visual-
ization of these structures creates interpretations of the measurements, which are not
comparable with the physical object, as in the case with larger scale images. A set of
different techniques involving volume rendering, isocontouring and dynamic mesh
reduction should be used as a guide for visualizing andnavigating these data-intensive
structures [38]. In some cases images acquired on small scale level are blurred or have
low-contrast. Representing this data requires a computationally sophisticated post-
processing step to enhance image quality and extract structures in the segmentation
process.

Realistic Representations

Additional data that improves the image quality in terms of visual experience can
drastically increase understanding. Enhancing the quality of images is an ongoing
research subject [1, 39]. For the purpose of prediction, customization of models
should be available in order to be patient-specific [40]. Medical images should be
visualized together with the representation of different structures by using specific
techniques. For instance, texture based volume rendering can be used to give the
user an overall impression of the measured data. Surface rendering as a method of
providing extra-information for structures of interest (see also [41]) can support the
spatial scene understanding (Fig. 5.4).

Use of the Scientific Method During the Design Process

In the realworld, tool designers have limited sources of information about the applica-
tion being designed. User opinions are rarely taken into consideration and technique
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Fig. 5.4 Segment visualization in YaDiV [5], showing intracranial air after brain surgery

improvements are often not evaluated. During the design process, visualization
researchers should use the scientific method (phenomena observation, hypothesis
formulation, results prediction and evaluation) to prevent creating a toolset that is
detached from the biomedical meaning [27].

Evaluation of Visualization Tool Design

Considering visualization as a technology, evaluation and validation are vital in order
to provide effectiveness and efficiency. Wijk explains in [28] an economic model of
visualization. The cost associated with using a visualization system depends on the
user and the initial development. The user cost is related to the learning time required
to use the new tool, to convert the user data to the system’s format and to interpret
the presented results. The high price of the initial development costs (i.e. to have a
novel idea and to develop it) is the major factor. The researcher’s process that tries
to provide a visualization tool to a scientist in order to help him in the understanding
of complex data is described in [28]. The state of the art review and the development
of a new idea is not enough to achieve success. Thus, it is crucial to prepare a
study on advantages and limitations before starting to work on a new visualization
method.Wijk also states that “visualization is not good by definition” [28]. Designers
should avoid visualizing information that could be extracted by automated analysis
of data, and do not require direct human interpretation. Reusing existing visualization
software can also be a viable solution.

5.4 Multiscale Visualization and Interaction

Multiscale visualization is necessary due to the division of science into domains, each
investigating the nature on a specific spatiotemporal scale and working with its own
type of data. This specialization can even prevent scientific progress if phenomena
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Fig. 5.5 Integrated visualization environment proposed by [21] (Reprinted by permission from
Macmillan Publishers Ltd: Nature Methods, vol. 7, O’Donoghue, S. I. et al.: Visualizing biological
data—now and in the future, S2–S4, Copyright © 2010 Nature America, Inc. Images courtesy of
ClearScience (drawing), iStockPhoto (lung X-ray), University of Kansas Medical Center, Depart-
ment of Anatomy and Cell Biology (lung histology), Digizyme and Cell Signaling Technology
(pathway). Protein structure and sequence alignment made using SRS 3D [43]. Chromosome image
fromUCSCGenomeBrowser [44],Nucleic Acids Res., vol. 38, Rhead, B. et al.: TheUCSCGenome
Browser database: update 2010, D613–D619, 2010, by permission of Oxford University Press

are analyzed in strongly separated scales. This fact is considered the “tyranny of
the scales” [8]. The observation and quantification of natural processes occurring at
multiple scales is not possible without a multi-scalar framework, resulting from a
multi-disciplinary conception among scientists and visualization researchers [42].

The main challenge for multiscale visualization of biomedical data is: how to
display simultaneously multiple visual features that map to very different space-
time regions? [27]. Detailed and global content information are usually distributed
at different scale levels, and also small scales should have visibility in large scales
(Fig. 5.5).

Requests for biomedical multiscale modeling and visualization have been made
during the last decade. Additionally, the level of integration of multi-disciplinary
and multiscale research has been increasing in the last years, as discussed later in
this section. However, according to Gehlenborg, “Truly integrated visualization of
systems biology data across the entire range of possible data types is still very much
in its infancy” [45].

Lorensen [20] emphasized the need to form alliances with the fields of application
of visualization. An understanding of each scale is required, but the importance lies
in coupling scales in a multiscale user interface. This interplay will provide a more
complete meaningful analysis and lead to solutions that will provide scientists with
new knowledge that would have not been understood without a proper multiscale
visualization.
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In this context, different interaction strategies can solve problems normally asso-
ciated with visualization in a more efficient manner. Prominent examples are VR
interaction strategies, e.g. augmented reality, navigation devices or haptic interfaces.

5.4.1 Multiscale Visualization

This section discusses multiscale visualization. It presents the design process, impor-
tant techniques and recent realizations.

Multiscale Design Process

The currentmultiscale design process consists of choosing the appropriate techniques
to create a multiscale system, depending on the following factors [18, 46]:

• Type of data and their features: formats, dimensionality and amount.
• Visualization style: e.g. isosurfaces, volume rendering, vector field, tensor field
visualization, … [47].

• Nature of multiscale: Considerations to be taken into account are based on the rela-
tions between the different types of data, as the order of magnitude or the relation
between space and time scale. If the data does not have time-space continuity, a
smooth transition is required. The presence of these gaps between different scales
is one of the major challenges in the design process.

• Style of interaction: navigation, augmented reality, haptic and gesture interaction
(see Sect. 5.5.2).

Multiscale Techniques

Current multiscale techniques can be categorized by their function [18]. The most
relevant of these techniques are:

• Out-of-core visualization: This collection of techniques handles datasets that are
larger than the available memory [3]. General external-memory techniques can
be divided in two groups: batched computations and on-line techniques. The first
group involves data streaming into internal memory. Later the data is processed in
multiple passes. In the second group, also based on batched computations, the data
is pre-processed according to possible queries and results are stored in a specific
structure that facilitates the access.

• Level of detail (LoD): The representation complexity of an object in the scene
depends on its relevance (e.g. position, camera speed or user focus). As datasets
grow in size and complexity, the importance of LoD techniques is increasing [48].

• Call-outs and lensing: These two techniques allow simultaneous view of detailed
and global content. Call-outs (Fig. 5.6a) are enlarged sub-regions that link to a
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Fig. 5.6 Example of multiscale visualization techniques applied to a histological image of fibro-
cartilaginous tissue (a) call-out technique, (b) lensing technique. Images courtesy of 3B’s Research
Group

point of the parent image. Movable lenses can magnify small-scale objects or
show different features from other scales (Fig. 5.6b).

• Methods for large-scale: When objects are very small compared to their distance
from the origin of the reference system, the resolution of the object geometry can be
lower than the numerical precision of the computer. This problem is often called
ill-conditioning. In medical datasets, registering the positions of small objects
with respect to their local parents can solve this issue. Another alternative, used in
astrophysics, is the use of power scaled coordinates, which can represent positions
of distant objects in a uniform mode [18].

• Time-varying data visualization: When using time-varying data, the insertion
of the time dimension introduces new requirements, e.g. the correlation between
temporal sampling frequency and spatial scales [46].

Examples of Multiscale Visualization

Among the biomedical visualization tools that currently exist (examples can be found
in [45, 49]), fully interactive and multimodal visualizations were rarely achieved in
concrete practical research. Genomics, proteomics and information visualization
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domains have dealt more with the multiscale problem in depth. Biodigital Human
[50] and Zygote Body [51] are clear examples of how web-visualization for a general
audience has improved.

Recent projects enable collaborative investigation of the human body as a single
complex system. Some of them are being developed under the framework of the
Virtual Physiological Human (VPH) [52], including the Multiscale Spatiotemporal
Visualisation (MSV) Project [53]. The MSV Project aims to cover the lack of specific
interactive visualization paradigms for biomedical multiscale data. By using the LoD
approach with placeholders [12], it allows for example navigation across CT scans
at different scales. This project and others use open-source systems and libraries
for image processing and visualization for rapid development of medical imaging
applications, such as the Visualization Tool Kit (VTK) [54]. They constitute the basis
of many advanced tools [55] and are suitable in a multi-scalar environment. Another
example is the Multimod Application Framework (MAF) [13], which supports the
combination of biomedical time-varying data from several sources, allowing for
instance an effective analysis of human motion [56].

In short, development of data fusion and multimodal visualization demonstrates
how these approaches can solve concrete multidisciplinary biomedical problems.
Thus, research groups and current projects highlight this need in order to solve their
challenges (e.g. [14]), and try to explore new approaches [42].

5.4.2 Human Computer Interaction (HCI)

HCI is a known concept that has its roots in the pre-computer era, when it was
better known as Man-Machine Interaction (MMI). Recent development of different
technologies has blurred the border betweenHCI reality and fiction [57]. This section
briefly discusses the basics of the field of HCI, its definitions and terminology and
categorizes different approaches.

Definitions and Terminology

Two different aspects of HCI need to be named. Functionality defines all abilities of
a system that HCI should provide access to. Different realizations of user interfaces
can result in different ranges of functionality. This variation is referred to as usability.
Every designer should keep the fragile balance between functionality and usability
at equilibrium [58].

Categories

A first approach to categorize HCI is based on activities performed by the user:
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• Physical: It constitutes all interactions involving direct use of senses and muscle
actions [57].

• Cognitive: It includes all mental capabilities of the user connected with under-
standing, learning and reasoning [59]. The cognitive aspect is also emphasized in
a more direct manner in Brain Computer Interfaces (BCIs) where the interface
senses the user’s cognitive state of the brain (via EEG) [60].

• Affective: The second class of mental capabilities focuses on the emotional state,
e.g. if the user is tired or angry. Sensing this allows the system to react on emotions
and to create emotional feedback [61].

Cognitive and affective activity approaches are still relatively new fields in HCI.
This overview focuses more on the physical interaction, which can be divided in
three subcategories, related to human senses [62]:

• Vision:Many input devices rely on humanvision, as for example, pointing devices:
mice, trackballs, graphic tablets and touch screens. Also commonly used visual
output devices are screens and printers.

• Audition: This category includes all means that involve hearing, human speech
and audio signalization.

• Touch: Although keyboards and buttons could be classified here, this category
focuses more on all force passing interfaces. This includes sending sensations to
human skin and muscles and receiving force feedback from the user.

It is important to note that even for the simplest interfaces, this categorization can
be vague. Since humans process information from the environment using different
senses in parallel, it is difficult to distinguish between meaningful and meaningless
stimuli. For example, keyboard keys have glyphs,which allow selecting keys visually,
but they have also a force threshold that permits to sense the state by touching.

Recent Trends in HCI

Although HCI and MMI have a long research tradition, only recent technological
advancements allowed the implementation of techniques that were already proposed
in the 1960s, like Augmented Reality (AR) [63]. This advancement enabled testing
of new ideas in practical trials, giving rise to further investigation. New research
trends that have become prominent in the past years are: Intelligent HCI, Adaptive
HCI, Ubiquitous Computing and Ambient Intelligence [64, 65].

Intelligent HCI refers to all techniques that are intelligent in the sense of pre-
processing data received from the user. Hence, simple interfaces become complex
systems, enhancing the received data into a complete stream of information.

Adaptive HCI refers to the adaptiveness of interfaces to become better suited to a
certain user. An example of this is the T9 system [66] used in cell phones, allowing
input of alphanumeric text with just a single press of the digit keys for each alphanu-
merical sign. It uses a form of intelligence, i.e. algorithms that process key sequences,
comparing themwith statistical models of languages and providingmissing informa-
tion. The T9 example is also useful to explain the concept of adaptiveness, because
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the T9 interface can adapt to the user’s behavior by means of a custom dictionary
where all exceptions are stored.

The principle behind ubiquitous computing and ambient intelligence is to form a
network of computers and interfaces that surround the user, sharing input and output
of individual machines and creating a synergy of interactions [64].

In the HCI context, each channel of communication between human and machine
is called a modality. This concept allows separating interfaces as unimodal and mul-
timodal ones. Multimodal interfaces are becoming an increasingly prominent field
of research [67]. However, multimodal realizations are only a combination of mul-
tiple unimodal systems. For the purpose of this overview it is enough to describe in
detail only the building blocks, i.e. unimodal systems. More insight into multimodal
systems is given in the context of multiscale interaction in the following sections.

Examples of Unimodal Systems in HCI

Prominent examples for visual systems are algorithms that detect human faces on
digitized images [68]. Startingwith the simple detection, thesemethods soon evolved
to analyze facial expressions. Improvements in computational power and resolution
of images enabled full body movement tracking with markers [69] and without
markers [70]. This progress allowed implementing gesture recognition systems [71].
Another interesting technique is gaze detection and eye tracking, which is commonly
used as a form of communication for disabled people [72].

Audio systems have been growing in popularity since robust cloud based voice
recognition systems have been introduced [73]. However, traditional desktop voice
recognition systems are also starting to offer ways to recognize the speaker, based
on a pre-learned database of voices [74]. Another approach to audio systems is the
extraction of the emotional state of the speaker (laugh, cry, sigh) from audio signals
in addition to the word content [75].

Sensor systems are commonly used. Keyboard, mouse, joystick are most promi-
nent examples of sensor systems [62]. Pen based input grew popular for some time,
as a highly natural means of communication, but because the implementation was
unreliable and expensive, the idea of Tablet PC computing never became main-
stream. With the renaissance of tablets, manufactured as light and mobile devices, it
is expected that the pen-based input will become as important as touch-based inter-
action like keyboard and mouse [76]. Haptic and pressure interactions are valuable
for robotics and medicine. These sensors allow robots to sense the environment as
humans do, to enable telepresence application [77]. Biomedical approaches consider
the utilization of sensor systems during microsurgeries. The use of the robotic inter-
face could help translating senses of surgeon from a small movement scale to familiar
macro surgery scale [78].
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Fig. 5.7 Superimposing of knee joint multiscale dataset (a). Features from diverse scales have a
specific importance at the current point of view (b)

5.5 Potential Solutions for Biomedical Multiscale Visualization
and Interaction

In this section we present an overview of strategies on multiscale visualization
and interaction for biomedical data. Especially the multiscale aspect requires novel
approaches for graphical user interfaces (GUIs).

5.5.1 Multiscale Visualization

The introduction of the strategies described below and the use of concepts com-
ing from other disciplines are meant to improve the quality of current visualization
systems, such as the tools presented in the Sect. 5.4.1 (Examples of Multiscale Visu-
alization).

Strategies for Biomedical Multiscale Navigation

Themultiscale techniques described in Sect. 5.4.1 (Multiscale Techniques) have to be
combined with several considerations in order to provide the scientist with a suitable
multiscale environment. For this aim, we propose several system requirements for
supporting multiscale navigation.

Need for representing complex biological systems with interacting scales

The development of new visualization models for data representation is required in
order to provide an integrated framework that can be used to navigate across several
scales. This framework should create spatial correlations in 3D structures to visualize
multiple properties at the same time and in a compact way, facilitating the alignment
of features from different scales (Fig. 5.7).

The presentation of data must be adequate for the working environment, which is
strongly related to the professionals using the tool (medical doctors, biologists, bio-
engineers, etc.). Selecting the optimal point of view and providing habitual software
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tools can help them to focus on extracting valuable knowledge from the measure-
ments.

Consistent interaction

The multi-scalar environment should lead to a modification of standard visualization
navigation tools [79], for example, by reusing them at different navigation levels.
Possible features are:

• Incorporation of GUI into the visualization scene
A standard GUI, composed of the 3D model and an interface based on (clas-
sic) windows and dialog boxes to configure the viewport, does not facilitate the
transition between scales.
The interface can be immersive or hybrid.

– In the immersive case, the 3D model is the interface, where all actions and com-
mands used to locate datasets (and metadata) require the user only to navigate
to the right position in the virtual model.

– Hybrid GUI provides features known from immersive 3D visualization such
as a high degree of interactivity with the 3D model. However, it still provides
access to standard desktop-based GUI widgets.

• Automatic modification of navigation parameters
Navigation and viewing parameters should be optimized to provide a seamless
transition between two scales and reduce manual user inputs.

Perception considerations

Facilitating the perception of multiscale visualization is very relevant. Attentiveness
should be aided by avoiding occlusions and through visual cues on the objects of
interest (e.g. highlighted, always visible, conservation of focal point,…). 3D location
awareness can be solved by navigation facilities (e.g. “here-you-are”, navigation
mediator maps, landmarks, flexible viewpoint lists, and destination lists [80]). For
instance, when click-and-zoom interaction is implemented, the involved movement
should be slow enough in order to ensure that the user keeps the information of
spatial position [81], but without any unnecessary delay (“as fast as suitable”). An
initial virtual tour (e.g. frommacroscale tomicroscale) presenting all these navigation
facilities can rapidly improve the viewer’s perception.

Influence of Other Disciplines

The adoption of concepts coming from other disciplines and fields is necessary in
order to increase the scientific meaning (see Sect. 5.3.2) and to create new ways to
understand (multiscale) biomedical data.

Knowledge Formalization

Visualization researchers should consider the use of knowledge formalization princi-
ples to storemeta-information efficiently along the data [19]. Ontology can be used to
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Fig. 5.8 Proposal of semantic visualization with ontology integration, represented with an infor-
mation visualization view. This can be considered as another scale because information is presented
in a different kind of abstraction. Images courtesy of 3B’s Research Group (histological images of
meniscus and cartilage micro-CT dataset), OsiriX Project (knee CT dataset) [10], and LBB-MHH
(gait motion analysis)

organize biomedical data into semantically connected pieces of information. Clear
examples of that are tools for visually exploring biological networks as VisANT
[82], which works with Gene Ontology [83]. The annotation of knowledge associ-
ated to the data, either ontology-driven or keyword-based, can provide a semantically
meaningful visualization and interaction (see Fig. 5.8).

The use of ontology concepts and relations could provide means for a rapid
retrieval of interesting relations during the interaction with the system [84], for
instance, allowing direct transition between parts that have similar meaning or have
been stored in the same dataset, but their spatial position is different. In addition, the
presentation of the content could be enhanced by view setup according to the stored
user profile. This user profile knowledge would be based on analysis of ontology
user queries and usage patterns [85].

Representation of uncertainty

The representation of uncertainty and errors in 3D diagrams should have the same
importance as in normal 2D scientific diagrams [41] because it is crucial for under-
standing the correctness of the visualization. There are several sources of uncertainty
during the representation process: acquisition, model, transformation (i.e. rescaling,
rotating) and visualization. Among others, the following methods can be used to
present uncertainty: use of displacement glyphs, arrows or patterns, blurring (note
the use of human psycho-physical abilities), and the combination of isosurfaces and



126 R. M. Millán Vaquero et al.

volume rendering methods. The representation of uncertainty can be an opportunity
for the integration of scientific and information visualization [27].
Visual analytics

The environments proposed should also provide tools to assist scientists to assimilate
the resulting knowledge. Although datamanagement and datamining are not covered
in this chapter, they are also important in visual analytics, a multidisciplinary field
that includes also visualization, HCI and perception concepts [85].

5.5.2 Multiscale Interaction

This section describes different software and hardware techniques that could be
applied in the multiscale context.

Navigation

Since the dawn of the graphical interface era, the computer mouse has been the most
popular pointing device. Pointing and clicking are common interaction patterns. They
form a ground base for other interactions that can be used in a multiscale context
[46]:

• Click-and-zoom is used when sub-scale data is too small to be resolved on the
display screen and it is marked by a token (labels, landmarks, etc.). The aim of
the click is to magnify the target. The occlusion of tokens inside larger objects is
a common problem.

• The technique push-out avoids occlusion when the camera is inside an object and a
path zooming out to the larger scale is constructed: a system can search the nearest
open hole, generating a curved path that the camera will follow [79].

• Click-and-fly interactions move the visualization through the scene and do not
necessarily imply a change of scale.

• Look-and-fly allows the user to freely change the direction of zooming if themouse
cursor is moved during this process from the screen center to another position [79].

Traditional navigation, however, can be inefficient in environments of massive
three-dimensional data. The introduction of 3D Computer Aided Design (CAD)
required the development of 3D navigator devices that offer 6-DOF (degree of free-
dom) view control inside a virtual space. Using 6-DOF devices together with a
standard pointing device could satisfy the input requirements.

In this scenario, the 3D navigator would provide a position in space and a heading
direction, giving an intersection plane of the screen where the view is cast on. The
mouse pointer would then navigate through the simplified 2D content of the screen
plane.
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Fig. 5.9 Example of augmented reality interaction. The user is wearing a VR helmet and is inter-
acting with VR content with a reference image of reality

As humans tend to solve two dimensional problems more quickly than three
dimensional ones [86], it is worth simplifying themodel of navigation by limiting the
number of dimensionswhere it is applicable. A good example of dimension reduction
is a geographic coordinate system. Every position on a three dimensional planet is
limited to a point on a surface, described by two angles [87]. While considering this,
it should be kept in mind that temporal data introduce time as another dimension.

Augmented Reality

Generating a convincing reconstruction of the world is difficult to achieve. Another
approach tries to enhance live video images with abstract data visualization, the so
called augmented reality [88].

In the multiscale context, the augmented reality approach could improve under-
standing of visualization and solve 3Dnavigation issues.Humans have natural aware-
ness of their position and are able to navigate in space. The user can freely approach
objects and examine them from different angles. Therefore, viewing multiscale con-
tent overlaid on real objects could be most natural in terms of navigation and interac-
tion. Of course, the realization of such interaction is non-trivial. Benefits, however,
outweigh potential problems, e.g. transformation of pre-registered datasets to fit the
current pose of the subject.

Augmented reality can be realized with different tools like:

• using a tablet device to compute a virtual “image frame”, showing the live recorded
background combined with visualization,

• using a wearable head mounted translucent display, e.g. Google Glass [89] or
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Fig. 5.10 Welfenlab virtual reality room with a Haption INCATM 6D device

• a VR helmet (Fig. 5.9) with an additional camera source for the reference image
of reality [63].

Different interfaces allow different scenarios of interaction. However, a common
use scenario for all of the described technologies is e.g. a slate perspective. In this
scenario the augmented reality display is a “window” to view data overlaid on a
real-time image of a subject.

Haptic Interaction

As noted in Sect. 5.4.2, touch and haptic interfaces play significant roles in medical
applications. An example of a haptic environment is presented in Fig. 5.10. The
ability to give haptic feedback, while preparing pre-operational planning, is crucial
for achieving success in medical procedures e.g. assembling fragments of fractured
bones. Vlasov et al. describe different approaches for haptic rendering [90–92]. As
many diagnostic procedures involve touch examination, creating a synergy between
touch and access to digitally recreated multiscale content can be invaluable as a new
diagnostic modality.

Gesture Interaction

As it has already been mentioned, much of multiscale medical content has rich diag-
nostic meaning and can be used for pre-operational planning. Therefore, creating a
strategy for utilizing gesture interaction for a sterile surgery room should be consid-
ered as important.

This kind of interaction should not only be limited to navigation but could also
allow interactive modification and processing of data. Beside hand gestures, facial
expressions can play an important role in multiscale environments. As an example,
visual systems detecting an eye wink can help in reducing user tasks [93].
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5.6 Conclusions

The creation of an integrated multiscale visualization framework is only possible
when the conception is changed: the system should be user- and field-centric. Human
perception considerations and tight cooperation between study domains and visual-
ization researchers should become the gold standard. In addition, new concepts in
this field, e.g. statistical parameters and the utilization of ontologies, can consoli-
date experimental data. All these efforts should serve a single purpose: to improve
understanding.

In the recent years, interaction strategies underwent a revolution. Technologies
that were previously considered too expensive have become widely available. This
allows interaction with biomedical data with new (low cost) interfaces, ameliorating
the user experience.

Multiscale visualization and interaction are challenging disciplines of research.
These areas are constantly evolving and expanding to other fields. Due to a multitude
of expertise required, creating a good multiscale design is a demanding task. Future
progress in this field will depend on the utilization of current trends and further
expansion in user experience and ontological/semantic directions.
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