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Abstract
The study and analysis of relationships in a complex and multi-scale data set is a challenge of information and
scientific visualization. This work proposes an integrated visualization to capture all the important aspects of
multi-scale data into the same view by leveraging the multi-scale biomedical knowledge encoded into an underly-
ing ontology. Ontology supports visualization by providing semantic means to identify relevant items that must be
presented to the user. The study and analysis of relationships across the scales are presented as results of queries
to the multi-scale biomedical knowledge space. We demonstrate the prototype of the graphical interface of an
integrated visualization framework and the knowledge formalization support in an example scenario related to the
musculoskeletal diseases.

Categories and Subject Descriptors (according to ACM CCS): H.5.0 [Information Systems]: Information Interfaces
and Presentation—General; J.3 [Computer Applications]: Life and Medical Sciences—Health; I.2.4 [Computing
Methodologies]: Artificial Intelligence—Knowledge Representation Formalisms and Methods

1 Introduction
This paper investigates visualization methods for the
biomedical domain that studies musculoskeletal articulation
of the human body and related diseases, focusing on the
anatomical district of the human knee. In particular, we are
interested in studying pathologies that may have different
disease features at different scales (e.g. cellular, molecular,
tissue, anatomy and behavior). Consider a pathology that
was evidenced as the result of a gait pattern study (behav-
ior scale), which might have been caused by the disruption
of the macromolecules content during the cellular behavior
change (cellular scale). For a complete understanding of this
disease, information sources from all different scales and
their relationships have to be considered.

In the following, we assume that the information sources
that come from different scales, their relationships and data
representing or accompanying them, reside in a multi-scale
biomedical knowledge space, and for simplicity we are go-
ing to refer to it as M. In M, different specialists, such as
tissue or biomechanical engineers, contribute with their data
and expertise. Sharing the information contained in M is re-
quired but it is not an easy task. On the one side, knowledge
formalization may be used to specify explicitly a shared con-

ceptualization, for instance using ontologies [SBF98]. On-
tologies are a means to identify relevant items in a given do-
main and formally define what are the properties or attributes
necessary to document them for an effective sharing. On the
other side, ontologies alone are not enough. To give a cog-
nitively rich and interactive exploration of M, smart visu-
alization means are needed to integrate visualization at the
conceptual level with visualization of patient data. Current
ontology visualization tools are not sufficient to this aim,
hindering the use of ontologies, and formalized semantic de-
scription in general, in the biomedical domain.

In this work we propose an integrated visualization en-
vironment to provide effective means to visually navigate
the knowledge space of a complex domain such as mus-
culoskeletal diseases. In this context, ontology serves as
knowledge formalization of M and it also registers the
suitability of visualization techniques of the patient-specific
data. Queries to the ontology determine semantically rele-
vant data and information to be visualized together in a sin-
gle frame of view, alleviating the search across all the patient
specific-data and allowing a local and global understanding.
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2 Previous work
Multi-scale biomedical visualization aims at the integration
of biomedical data distributed at different spatio-temporal
scales and their simultaneous presentation with detailed and
global information [MMC∗12]. Except in the domains of
genomics and proteomics, it is mainly covered by Scien-
tific Visualization (SciVis), focusing primarily on physical
data and providing realistic representations. Advances in
multi-scale biomedical visualization have been made dur-
ing the last decade, and the level of integration of multi-
disciplinary research has been increasing [OGG∗10]. Recent
projects [HCB∗10] enable collaborative investigation of the
human body as a single complex system and demonstrate
how multi-scale approaches can solve specific multidisci-
plinary biomedical challenges. However, improvements are
slow due to the difficulties in the development of scientist-
centric visualizations that provide understanding [Joh04].
Fully integrated visualization across all the range of data
types has not been achieved yet [GOB∗10].

An ontology is a knowledge representation, whose role is
to define the concepts, relationships, and other distinctions
that are relevant for modeling a domain [Gru93]. Applica-
tions of ontologies in medicine range from definitions and
classifications of common medical terms [SCC97], to ex-
plicit specifications that help organizing heterogeneous data
and documenting background knowledge for further reuse
and integration. Most of the biomedical ontologies [RM03,
GSG04, Lan06] are written in Web Ontology Language
(OWL) [BKMPS], which has a model-theoretic semantics
defined in Description Logics (DL) [BCM∗10]. The presen-
tation of the knowledge encoded in the explicit formaliza-
tion may be realized by using ontology visualization tech-
niques, which mostly come from the field of Information Vi-
sualization (InfoVis) [KHL∗07]. In the biomedical domain,
Treemaps [Shn92] have been applied to the visualization of
the Gene Ontology [BDBS04, ABB∗00]. This method facil-
itates the navigation of the ontology but it lacks realistic rep-
resentation of each concept. In [KPM∗08] realistic concept
representations of an ontology has been proposed for the vi-
sualization of hierarchical neuroanatomical structures of a
mouse’ brain.

The traditional distinction of visualization techniques into
SciVis and InfoVis delimitates their uses [Rhy03]. The need
of overcoming this differentiation led to the trend of propos-
ing new visualization classifications [Hag11] and the con-
vergence of visualization techniques developed in paral-
lel [Hau06]. An example in this direction is the visualiza-
tion of the anatomical hierarchy integrated with volumetric
data [BVG10]. Indeed, the techniques of these subfields are
complementary and can be smoothly integrated in order to
represent the features contained in M.

3 Representing the knowledge formalization of M
In order to have a complete understanding of a pathol-
ogy with different disease features on different scales, we

need to organize heterogeneous and multi-scale information
sources. We also have to take into account different relation-
ships between these information sources, as well as data that
represent them. To this end, we assume to have an ontol-
ogy that encodes such a multi-scale biomedical knowledge,
likely a complex ontology, and we want to find an effective
means to visualize relevant items to be presented to a specific
user within the domain M.

In our approach, relevant items are identified as results
of queries to the ontology, exploiting a graph representa-
tion of the ontology. More precisely, we represent ontol-
ogy as a labelled directed graph G = {V,E}, where nodes
(V = {C, I}) are concepts (C) and instances (I) of concepts,
and edges E = {R, isa}, where R are relations between in-
stances and "is a" is a relation between instances and con-
cepts. G is labeled with l : V 7→ L, that maps nodes to
the corresponding labels (L, labels of concepts, individuals
and relations). For example, cellular change, loss of biome-
chanical function, MRI evidence and alteration in gait pat-
tern are instances of a degradation process feature, repre-
sented as a graph G as depicted on Figure 1. The general

Degradation process feature

Cellular change Loss of biome-
chanical function

MRI evidence Alteration in
gait pattern

isa isa isa isa

Figure 1: Degradation process feature (DPF).

structure of the ontology focuses on multi-scale degrada-
tion process features (DPF ∈ C) that may cause one an-
other (cause,caused−1 ∈ R), are evidenced (evidenced ∈ R)
by sources of evidence (SOE ∈ C) which in turn are mea-
sured (measured ∈ R) by different techniques. This essen-
tially formalizes propagation of degradation process features
in hierarchical pathologies. The ontology supports visualiza-
tion, by formalizing relationships between multi-scale data,
patients, techniques, user profiles and relevant visualization
items (e.g. spatio-temporal scale, visualization suitability).
Succinctly the multi-scale biomedical knowledge space is
represented by G on Figure 2.

4 Methodology of the integrated visualization
The proposed visualization combines a multi-scale approach
and InfoVis and SciVis techniques in order to merge and
present visually relevant features of M into the same view.

User profile We classify data of M according to their scale
of data and visualization suitability (Table 1). Micro-scale,
medium-scale and macro-scale classiffy data acquired or de-
rived from different spatio-temporal ranges. Abstract scale
encompasses all the nonspatio-temporal knowledge that can-
not be directly implied from one of the previous scales,
e.g. anatomical structure or relations between evidences in a
multiscalar pathology. The main scale of interest of the user
is saved in the user profile. Visualization suitability is the ap-
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Figure 2: Graph representation G of M’s ontology.

Visualization
suitability /
Scale of Data

SciVis technique InfoVis technique User
profile

Micro-scale Molecular and his-
tological images,
micro-CT

Properties extracted
at molecular, cellu-
lar and tissue level

Tissue
engineer

Medium-scale PET, MRI, CT and
segmentations

Radiologist

Macro-scale Gait pattern anima-
tion, original video
sequence

Gait pattern graphics Biomechanical
engineer

Abstract scale - Anatomical struc-
ture, relation among
evidences, other
derived knowledge

Computer
scientist,
Generic

Table 1: Data structure and user profiles of M.

propriateness of a given data set (sub-space) of M to be rep-
resented by using a concrete SciVis (e.g., volume rendering
for MRI) or InfoVis technique (e.g., node-link diagram for
hierarchies or bar chart for statistical data). The aforemen-
tioned parameters, which are encoded in the ontology, allow
the positioning of the multi-scale data on the visualization
framework in a suitable way according to their properties
and user interests.

Integrated visualization framework The visualization
scene (Figure 3) consists of three layers: focus, context and
background. Data sets from each spatio-temporal scale (i.e.
micro, medium and macro) are positioned on one of these
layers, which are mainly distinguished by their z-order. Fo-
cus constitutes the main scale and data sets placed there are
visualized on the front level. Context is placed behind and
its data sets are spatially aligned with the previous data to
provide context to the data on the focus layer. Background is
the last layer, least seen and less important. Their data sets
are not directly related to the focus layer data, but they com-
plete the general view across all the spatio-temporal ranges
(e.g., macro-scale data set in the Figure 3). Data are mainly
included in nodes, which allow a consistent representation.
The actual visualization of each node depends on the visual-
ization suitability (e.g. graphs, images or 3D content).

The positioning of the nodes depends on the visualization
suitability of the data and the current main scale of interest.
Given the main scale, its data representation will be posi-

tioned on the focus layer, represented by a main node. This
node contains the most relevant SciVis data for the scale.
InfoVis data and other specific SciVis data sets are visual-
ized with subnodes. The integration of the adjacent scales
depends on their spatio-temporal proximity. The most adja-
cent scale is aligned in the view on the context layer, and the
last one is presented on the background layer using the call-
out technique. The use of this augmented representation alle-
viates the differences in the order of magnitude of data, and
allows the direct extraction of information from the context.
The abstract scale is represented by perceptual cues in the re-
lations between nodes (labels, arrows, colored lines), enrich-
ing understanding, e.g., spatial origin of sources, anatomical
structures, hierarchy of evidences in a pathology.

Figure 3: Proposed visualization framework, with micro-
scale as main scale.

5 Example scenario
Musculoskeletal diseases are an example of hierarchical
pathologies of multi-scale nature. Figure 4 represents the
articular cartilage degradation during osteoarthritis. Degra-
dation features on the cellular scale propagate upwards
through molecular, macromolecular, and tissue scales, caus-
ing finally the alteration in gait pattern [Gol12, ADC∗08].
For a complete understanding of the process, data acquired
through different techniques across different scales and their
relationships have to be considered. In this scenario, the
multi-scale biomedical knowledge space M basically con-
sists of the features of the degradation process, their re-
lationships and the aforementioned information sources as
evidences of the features. Ontology querying languages,
such as SPARQL (SPARQL Protocol and RDF Query Lan-
guage) [SP08], use graph pattern matching techniques to
evaluate answers. Evaluation of queries for graph-based
structures is completely out of the scope of this paper, we
refer to [PAG09] for details. We only present here schemat-
ically intuition for graph pattern matching techniques and
how the results of these queries may be used to identify se-
mantically relevant items to support visualization. For exam-
ple the results to the following query, expressed in English
as “Given a technique, what is the DPF evidenced by its
sources of evidence?” may be obtained by evaluating graph
pattern match from query graph Q to the Knowledge Base
graph KB (see Figure 5). The answer set of mappings from
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Figure 4: Degradation of articular cartilage during os-
teoarthritis. Each DPF is evidenced by sources of evidence
and those are measured by certain techniques. Note: this ex-
ample is a particular instance of M’s ontology.

Degradation
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isa
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KB
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Figure 5: Query example.

variables in Q to values in KB (depicted in different colors
on Figure 5) is summarized in the following table:

?x (Technique) ?y (SOE) ?z (DPF)

Live/Death count Cell viability Cellular change
PCR An./Cat. reactivation Cellular change

Queries to the ontology of M can also retrieve all the rele-
vant information of a given patient (“Which are all the Data
which concern a specific patient?"), and the techniques used
(“Which is the technique that obtains specific Data?").

Visualization The support of the ontology allows for ob-
taining all necessary visualization parameters for position-
ing the different spatio-temporal data sets on the scene and
their proper representation, as visualization suitability and
scale of data (“In which Spatio-temporal scale a given DPF
is placed?", “Which Visualization technique visualizes the
given Data?"). Accordingly, the data sets are represented
and positioned, as described in Section 4. Another important

fact is that ontology can also be queried to get information
from the abstract scale, e.g. the relations between the sources
of evidences which proof the different cartilage degradation
process features (Figure 6).

Figure 6: Integrated visualization of patient-specific data
set and the cartilage degradation process. The main scale
of interest is micro-scale, which shows all its data sets. The
relations causes between SOEs and DPFs are visualized by
blue and red arrows, respectively.

6 Conclusion and future work
The next step for the proposed system is to perform the in-
teractive exploration of multi-scale data sets [MVRFW14].
This will take benefit from the visualization criteria adopted,
such as scene layers or the consistent representation of data
sets in nodes. Specifically, the system aims to provide two
different view modes. In the 2D focus view mode, the user
viewport is perpendicular to the layers, and the user can
manipulate the nodes, enlarge or hide them and change
the view of the data set contained in the node. In the 3D
overview mode, the three layers are presented in 3D perspec-
tive, which allows the multi-scale navigation by sorting the
layers. Another step is to better support collaborative diag-
nosis in which different medical specialists work together in
the same environment while preserving their habitual way of
working. They augment M with their findings; discuss their
conclusions and continue the knowledge discovery in M.
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