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Abstract—Theoretical aspects of circuit equations from a
differential geometric point of view are considered and methods
for solving circuit equations by means of algorithms from com-
putational differential geometry are presented. These methods
are illustrated by means of some simple circuit examples.

I. INTRODUCTION

It is known since the early Sixties that descriptive equa-
tions of electrical circuits belong to the class of differential
equations on differentiable manifolds. This result is related to
the celebrated paper of Moser and Brayton [1] in 1964 where
their equations for the description of reciprocal and nonlinear
circuits are written in coordinates as usual. It lasted another
few years until the equations of Moser and Brayton were
reformulated by Smale [2] by means the framework of modern
differential geometry. Further work was done by Matsomoto,
Ishiraku and other to refine this approach for describing
electrical networks (see e.g. Mathis [3]). On the other hand
Sandberg and Gear tried to solve the so-called “time-constant
problem” of circuit simulation being one of the big obstacles
to construct an efficient and general purpose circuit simulator.
It was emphasized by Gear that circuit equations should be
considered as algebro-differential equations (DAEs) but it
lasted more than another ten years until Linda Petzold - a
former Ph.D. student of Gear - found out in 1982 that ’“DAEs
are not ODEs” (ODEs: ordinary differential equations). For
references and further information see e.g. Mathis [4].

At the beginning of the Eighties – approximately twenty
years after the understanding that these circuit equations are
of a more general type than ordinary differential equations –
it became clear that circuit equation should be considered as
differential equations on differentiable manifolds or algebro-
differential equations. A detailed presentation of the concept
of circuit theory from the point of view of modern differential
geometry is included in Robert Hermann’s monographs
on “Interdisciplinary Mathematics”’ where the following
statement is formulated: “Electrical circuits offers prototypes
and examples of many sorts of abstract mathematical and
physical structures; it is extremely useful and important
to sort out such generalizations, since it seems that many
situations - in biology, chemistry, economics and physics -
can be modelled by means of these mathematical structures.”

(Herman [5])

II. MOTIVATION

Especially problematic for the numerical analysis of elec-
tronic circuits are non-linear electronic devices, whose func-
tionality are based on the feedback principle or electronic de-
vices, whose voltage/current characteristic includes a region of
negative slope (negative differential resistance). Furthermore
the multi-vibrators, Schmitt trigger circuits and comparator
circuits should be mentioned in this context. Also many digital
circuits belong to the numerically problematic circuits, because
these are in fact analoge circuits that retain information by
assuming a certain state. When the information changes very
fast, transitions may occur. For modeling this class of elec-
tronic circuits, it will be necessary to use differential equations
with singularities.

III. COMPUTATIONAL METHODS FROM DIFFERENTIAL
GEOMETRY

Although concepts from differential geometry are known
for a long time studying theoretical aspects of circuit analysis
computational concepts based on differential geometric
ideas are missing until recently. In this paper we use
geometric algorithms to explicitly compute operation points
for electronic circuits. As mentioned, we can treat state space
as a differentiable manifold and the dynamic defined on it
as a differential equation system. Opposed to conventional
methods which are using homotopy methods to search
operation points, here homotopy method are only used
in finding specific starting points on the manifold. The
principles of the homotopy methods was already used in the
publications of Naß and Wolter [7] and [8]. After obtaining a
starting point, we use the dynamic on the manifold to trace a
solution. In this approach we will consider the derived circuit
equations as a geometrical problem only. We can then trace
a curve on the manifold by numerically integrating the given
differential equations which describe a tangent vector field
on the manifold. This should lead us to an operation point
or, if an oscillating circuit is given, represents the set of states.

ISTET'09

169



For many problems the manifolds are shaped as folded
surfaces. These surfaces are embedding the solution curves,
which may reach a maximum with degenerated dynamics.

After a ”Jump” the curve may continue in a different
surface area. This behaviour is described by and Shankar
Sastry.[16] The above problem can be solved by a Tichonov
regularisation [3], [9] which transforms the algebraic equation
to a differential equation.

In the folowing chapters we will attempt to illustrate our
methods with simple examples.

Fig. 1. The simple circuit of the Van der Pol oscillator consisting of a
capacitor and a nonlinear resistor.

IV. EXAMPLES

A. Van-Der-Pol-Oscillator

The degenerated Van-der-Pol-Oscillator is a simple circuit
consisting of a resistor and a capacitor that are connected in
a circle, described by:

dv

dt
= i (1)

0 = −v − i3 + i (2)

where the differential equation (1) characterizes the capacity
and the non-linear relation (2) defines the resistance. A
diagram of this simple oscillator is shown in Figure 1.
To understand this example the shape of the curve of the
nonlinear resistance is important. This is shown in Figure 2.

The curve shown in Figure 2 may also be similarly
considered as a manifold containing the dynamics. From
this geometric point of view, the solution of (2) is a one-
dimensional manifold, e. g., a curve M in the plane and the
differential equation generates a dynamic which should be
solved with respect to the current i. But this is not feasible
globally, since in the extrema of the curve wrt. v, the dynamic
degenerates to 0. Since i 6= 0 in these points, they can not
be equilibria and therefore the model does not capture the
behavior of the circuit.

The described problem can be solved by a so-called Ti-
chonov regularisation [9], [10] which transforms the algebraic
equation to a differential equation

ε
di

dt
= −v − i3 + i. (3)

Fig. 2. The resistance curve is regarded as a manifold. Additionally the
dynamic projected on the manifold has been drawn on the surface. The vertical
arrows indicate the jump behaviour.

Fig. 3. The result after the Tichonov regularisation for the Van Der Pol
example

with ε near zero. The dynamic of the system is now
generically smooth and the formerly singular points exhibit
a very fast dynamic, the system “jumps” from a formerly
singular point tangentially to another area of the manifold. We
want to capture this phenomenon with differential geometric
tools and trace the curve on the manifold to an extremum
where it jumps tangentially, thus following the oscillating path.

The result of the Tichonov regularization for the simple
Van der Pol example is shown in Figure 3.

The jumps described above occur in a special class of
folded manifolds. These are embedded in a space whose axes
can be associated with unlimited voltages and currents of the
circuit. Now, a geometrically interpretable mapping S assigns
drop points to bounce points. the drop points are located on
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Fig. 4. Possible curves jump on a folded manifold.

Fig. 5. Plot of the trajectory of the sinusoidally excited Van-Der-Pol-
Oscillator on the critical manifold of the system. from [15].

maxima curves - the bounce points lie on a coreespondending
sheet of the same manifold. Such a jump can be done in
different ways.

First, the points can be mapped by tangential projection on
a resulting perpendicular curve. On the other hand, the points
can be mapped by extending the current tangent vector at the
time of the bounce. The last option is certainly more difficult
to calculate but is still possible in an acceptable time.

B. Sinusoidally Excited Van-Der-Pol-Oscillator

Another example is the sinusoidally excited Van-Der-Pol-
Oscillator. (see: Guckenheimer[15]) This is a simple example
where the manifold is a two-dimensional surface in three-
dimensional space. The following equations are a description

of the sinusoidally excited Van-Der-Pol-Oscillator:

εẋ = y + x− x3

3
, (4)

ẏ = −x + a sin(2πΘ), (5)
Θ̇ = ω, (6)

with the corresponding vector field on the cylinder:

R2 ×M1

is defined. The slow dynamic of the system is obtained for
ε = 0 where derivate the side of (4) and scaling time with
factor (x2 − 1) with (dτ := dt/(x2 − 1)). Resulting in the
following equations:

Θ′ = ω(x2 − 1), (7)
x′ = −x + a sin(2πΘ) (8)

with (·)′ ≡ d/dτ .

In addition to the (possibly) slow dynamics figure 5 shows
that the trajectories at certain points leave the manifold with
a jump and reach another part of the manifold. As with the
autonomous van der Pol equation is a solution to this behavior
explained by using a regularization. The relationships are
geometrically interpretable.

The mathematical and analytical part of the project
essentially is differential-geometric studies of any state
manifolds which appear by electronic circuits.

V. CONCLUSION

We have shown, how geometrical algorithms can be used
to solve the problem of finding operation points of a class
of oscillating electronic circuits. Basically we show how to
explicitly calculate “jump” sets on the state space Manifold
that capture the behavior of the circuit. If it is possible to
extend these methods to higher dimensional spaces, they can
potentially be used as an alternative to SPICE-based circuit
simulators in commercial software packages. Using the “Van
der Pol”-example the solution procedure for an oscillator was
explained.

To be successful, the following steps are necessary:
Based on classical theory of nonlinear electronical circuits, a
differential-geometric basis has to developed. In contradiction
to the currently used analytical approach, the differential-
geometric basis allows the usage of numerical analysis
methods
Furthermore representative benchmarks have to be constructed
to validate the performance of the new mathematical methods.
In particular, it will be possible to use algorithms to trace
curves on surfaces in higher dimensions to find the operation
points. Numerical differential-geometry methods for this case
are already well provided and well understood.
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The developement of efficient algorithms to calculate the
solution curves on the surface being embedded in a n-
dimensional space(n > 2) is not easy, especially difficult will
be to find sufficient starting points.

It will be essential to verify the calculated solutions for
selected examples from real electronic circuits. Additionaly
it will be very helpful to develop a system that is capable
of visualizing the attributes of the circuits. In the context of
complex nonlinear electornic circuits, their dynamic behaviour
will be of great interest. New characteristics of the electronic
circuits could be gained and used for design improvements.
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(AEÜ), 46 (1992) pp. 305-309.

[7] Henning Naß and Franz-Erich Wolter and Hannes Thielhelm and Cem
Dogan, Medial Axis Inverse Transform in 3-Dimensional Riemannian
Complete Manifolds. Proceedings of NASAGEM, Hannover, 26th
October 2007 10(2007)

[8] Henning Naß and Franz-Erich Wolter and Cem Dogan and Hannes
Thielhelm, Computation of Geodesic Voronoi Diagrams in 3-Space using
Medial Equations. Proceedings of NASAGEM, 26th October 2007
10(2007)

[9] E.F. Mischenko and N.Kh. Rozov, Differential Equations with Small
Parameters and Relaxation Oscillations. Plenum Press (1980).

[10] Wolfgang Mathis, Theorie nichtlinearer Netzwerke.. Springer (1987).
[11] R.B. Kellogg, T.Y. Li and J.A. Yorke, A constructive proof of the

Brouwer fixed-point theorem and computational results, SIAM J. Numer.
Anal. 18 (1976), pp. 473483.

[12] S. Smale, A convergent process of price adjustment and global Newton
method, J. Math. Econ. 3 (1976), pp. 107120.

[13] S.N. Chow, J. Mallet-Paret and J.A. Yorke, Finding zeros of maps:
Homotopy methods that are constructive with probability one, Math.
Comput. 32 (1978), pp. 887899.

[14] E.L. Allgower and K. Georg, Numerical Continuation Methods: An
Introduction, Springer-Verlag, Berlin (1990).

[15] John Guckenheimer and Kathleen Hoffman and Warren Weckesser,
Global analysis of periodic orbits in the forced van der Pol equation,
Global Analysis of Dynamical Systems – Festschrift dedicated to Floris
Takens for his 60th birthday, Henk W. Broer and Bernd Krauskopf and
Gert Vegter, IOP Press, 261-276, 2003.

[16] Shankar Sastry and Charles A. Desoer, Jump Behavior of Circuits and
Systems, IEEE Trans. Circ. Syst.1981, volume 28/12, pp. 1109-1124

[17] Vladimir I. Arnold, Geometrical Methods in the Theory of Ordinary
Differential Equations, Springer, edition 2, 6/1988, isbn 0387966498

172


