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ABSTRACT
This paper presents matching and similarity evaluation meth-
ods between two NURBS surfaces, and their application to
copyright protection of digital data representing solids or
NURBS surfaces. Two methods are employed to match ob-
jects: the moment and the curvature methods. The moment
method uses integral properties, i.e. the volume, the princi-
pal moments of inertia and directions, to find the rigid body
transformation as well as the scaling factor. The curva-
ture method is based on the Gaussian and the mean cur-
vatures to establish correspondence between two objects.
The matching algorithms are applied to problems of copy-
right protection. A suspect model is aligned to an original
model through the matching methods so that similarity be-
tween two models can be assessed to determine if the suspect
model contains part(s) of the original model, which may be
stored in an independent repository. Three types of tests,
the weak, intermediate and strong tests, are proposed for
similarity assessment between two objects. The weak and
intermediate tests are performed at node points obtained
through shape intrinsic wireframing. The strong test relies
on isolated umbilical points which can be used as finger-
prints of an object for supporting an ownership claim to the
original model. The three tests are organized in two decision
algorithms such that they produce systematic and statistical
measures for a similarity decision between two objects in a
hierarchical manner. Based on the systematic and statistical
evaluation of similarity, a decision can be reached whether
the suspect model is an illegal copy of the original model.
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1. INTRODUCTION
Free-form is a term used to describe an object which can-

not be represented with simple surfaces such as planes, the
natural quadrics and tori [6]. Using Non-Uniform Ratio-
nal B-Spline (NURBS) surface patches, free-form shapes of
great complexity can be represented in digital form, which
are used to design many 3D objects such as ship hulls, au-
tomobile and aircraft bodies, turbines, propellers, and con-
sumer products.

In the past, these 3D model descriptions had been rep-
resented with a fairly restrictive shape variety, for exam-
ple, 2D drawings (blueprints). Today they are typically de-
scribed with CAD systems in digital form. Here the rich-
est shape variety can be modeled by free-form surfaces that
are typically defined as NURBS. Hence, the most important
and fundamental part of the value creation process for a 3D
model consists in creating the digital 3D free-form model.
As this digital data model is expensive and important part of
the whole production process there exists the natural need to
protect its ownership [16]. Two types of feasible protection
methods can be considered: one is to embed watermarks in
the object and check them for illegal duplication. The other
method is to align two objects as accurately as possible and
check them for similarity.



Several methods have been reported on digital watermark-
ing for 3D polygonal models which are widely used for vir-
tual reality and computer graphics. Most of the methods
are designed for triangular meshes and embed watermark
information by perturbing geometry or changing topolog-
ical connectivity [22, 1] or using the frequency domain of
3D models [14, 26, 33]. Watermarking on Constructive
Solid Geometry (CSG) models was developed by Fornaro
and Sanna [10]. Despite the popularity of NURBS curves
and surfaces, watermarking for the NURBS representation
is relatively new in the CAD field. Ohbuchi et al. [23] pro-
posed a new data embedding algorithm for NURBS curves
and surfaces, which are reparameterized using rational lin-
ear functions whose coefficients are manipulated for encod-
ing data. The watermark information, however, can be eas-
ily destroyed by reparameterization or reapproximation of
the curves and surfaces. Since it is difficult to insert any
form of robust user-defined watermarks in the NURBS rep-
resentation, the similarity checking method is adopted in
this work. Apart from a rigid body motion, the definition
of every surface or solid provides the shape identity of the
object. This shape identity might be called the shape intrin-
sic fingerprint, as it is not artificial but is related merely to
the definition of the object’s shape. Umbilics are a particu-
lar type of these shape intrinsic fingerprints. Therefore, the
fundamental issue involved here is to compare two objects
(solids or NURBS surface patches) using the shape intrin-
sic fingerprints and determine whether one object is a copy
of the other. Since such fingerprints are intrinsic features
of an object, extracting these fingerprints does not disturb
the object as opposed to watermarking which embeds ad-
ditional information resulting in some modification of the
object. Digital fingerprints have been widely used for 2D
images and multimedia data. Recognition, digital indexing
and tracking of images or multimedia data [13, 9] are main
applications of the digital fingerprints. Some researchers re-
fer to digital fingerprints as passive watermarks. They can
also be used as an alternative to digital watermarks. How-
ever, digital fingerprints for 3D CAD models have not been
discussed so far in the extant literature.

Before comparing two free-form objects, they have to be
aligned so that the effects of a rigid body transformation (ro-
tation and translation) and possibly scaling are minimized.
This alignment problem is equivalent to localization or regis-
tration. When matching is used in the context of computer
aided inspection, it is referred to as localization, whereas
when it is used in the context of computer vision it is re-
ferred to as registration.

The moment based approach is a simple and useful method
and has been extensively employed for aligning two objects,
especially two solids [28]. Iterative optimization approaches
are widely used in matching problems [4, 32, 24]. An op-
timal transformation can be found by minimizing a mean
square distance metric objective function which involves six
degrees of freedom for matching (three for translation and
three for rotation). A matching problem with no prior clue
for correspondence or transformation belongs to another cat-
egory of matching discussed in the literature. Bergevin et al.
[2] used a hierarchical surface triangulation representation
to estimate the 3D rigid body transformation. A matching
method for two range data sets using the principal curva-
tures and Darboux frames was proposed in [7]. Most of the
matching approaches developed so far, however, deal with

a case of sets of points vs. a surface. When two NURBS
surface patches are given, points are sampled from one of
the surfaces, and then any of the matching methods can be
employed. But, in this case, no assurance can be made that
the best transformation, i.e. the global optimum, has been
found, as some of the surface information is lost during the
digitization of the surface. Therefore, accurate alignment
cannot always be expected.

In this paper, we review matching methods using the prin-
cipal moments and surface intrinsic properties. Similarity
checking algorithms are proposed along with a new detec-
tion method for umbilical points and a surface intrinsic wire-
framing method. We demonstrate the proposed algorithms
for copyright protection of objects in NURBS form.

This paper is structured as follows: Mathematical con-
cepts from differential geometry are briefly reviewed in Sec-
tion 2 and a method to extract umbilical points is presented
with a few examples in Section 3. An algorithm to cre-
ate a surface intrinsic wireframe for a given NURBS surface
is described in Section 4 and two matching methods are
presented in Section 5. Section 6 describes three tests for
matching and assessment of similarity, followed by two sim-
ilarity decision algorithms in Section 7. Several examples
demonstrating the proposed matching methods and similar-
ity decision algorithms are presented in Section 8. Finally
Section 9 concludes the paper, including suggestions for fu-
ture work.

2. REVIEW OF DIFFERENTIAL GEOME-
TRY

Suppose we have a regular parametric surface

r(u, v) = [x(u, v), y(u, v), z(u, v)]T . (1)

From the theory of differential geometry on surfaces, the first
(I) and the second (II) fundamental forms [31] are defined
by

I = dr · dr = Edu2 + 2Fdudv + Gdv2, (2)

II = −dr · dN = Ldu2 + 2Mdudv + Ndv2, (3)

where N is the surface unit normal vector, E, F and G the
first fundamental form coefficients, and L, M and N the
second fundamental form coefficients. The Gaussian (K)
and the mean (H) curvatures of (1) are given by

K =
LN − M2

EG − F 2
,

H =
1

2

(

2FM − EN − GL

EG − F 2

)

. (4)

Lines of Curvature
A line of curvature is a curve on a surface whose tangents
are the principal directions at all its points. At a point on a
surface away from umbilical points, two principal directions
are uniquely determined and are orthogonal [31].

Employing the arc length parameter s, i.e. u = u(s) and
v = v(s), we obtain the ordinary differential equations for
lines of curvature as follows [31]:

du

ds
= η(M + κF ),

dv

ds
= −η(L + κE), (5)

or

du

ds
= µ(N + κG),

dv

ds
= −µ(M + κF ), (6)



where κ is the principal curvature, η and µ are factors de-
termined through the normalization condition using the first
fundamental form [21, 25]. Depending on the size of the co-
efficients, (L + κE) and (N + κG), either (5) or (6) are
selectively used. Namely, if |(L + κE)| ≤ |(N + κG)|, we
solve (5). Otherwise, solve (6). See [21, 25] for details.

Geodesics
Let us define a unit vector u = N × t at a point p on a
surface, where t is the unit tangent vector of a curve c on
the surface at p. Then u is perpendicular to N and t, and
is contained in the tangent plane of the surface at p. The u
component of the curvature vector κ of c, which is obtained
by

κg = (κ · u)u, (7)

is called the geodesic curvature vector, and the magnitude of
κg is the geodesic curvature in the direction of t at p [31].
Considering that the surface normal N has the direction of
a normal to the geodesic curve ±n, a set of differential equa-
tions for geodesic curves can be derived from two equations
n · ru = 0 and n · rv = 0, using the Christoffel symbols Γi

jk,
(i, j, k = 1, 2) [31] as follows:

du

ds
= p, (8)

dv

ds
= q, (9)

dp

ds
= −Γ1

11p
2 − 2Γ1

12pq − Γ1

22q
2, (10)

dq

ds
= −Γ2

11p
2 − 2Γ2

12pq − Γ2

22q
2. (11)

Umbilics
An umbilic is a point on a surface where the normal curva-
tures in all directions are equal and the principal directions
are indeterminate. The principal curvature functions are
represented in terms of the Gaussian (K) and the mean (H)
curvature functions as follows [31]:

κ1,2(u, v) = H(u, v) ±
√

H2(u, v) − K(u, v). (12)

Let W (u, v) = H2 − K. The principal curvatures, κ1,2 are
real valued functions so that W ≥ 0 must hold. From the
definition of the umbilical point we have W (u, v) = 0. With
these two conditions combined, we can infer that at an um-
bilical point, W (u, v) has a global minimum [19, 21]. Here,
we assume that W is at least C2 smooth. Then, the condi-
tion that W has a global minimum at an umbilic implies that
∇W = 0. Therefore, at an umbilic the following equations
hold [21]:

W (u, v) = 0,
∂W (u, v)

∂u
= 0,

∂W (u, v)

∂v
= 0. (13)

Given a polynomial parametric surface patch such as a
rational Bézier surface patch, we can set W = PN

PD
, where

PN and PD are polynomials in u and v. With the condition
W ≥ 0, PN ≥ 0 is assured since PD > 0 is always true under
the regularity condition of the surface [31]. The equation
W = 0 is equivalent to PN = 0. The first derivative of W is
∂W
∂xi

= ( ∂PN

∂xi
PD − PN

∂PD

∂xi
)/P 2

D(i = 1, 2), where x1 = u and

x2 = v, which is reduced to ∂W
∂xi

= ( ∂PN

∂xi
)/PD using PN = 0.

Therefore, equations (13) are reduced to [21]

PN (u, v) = 0,
∂PN

∂u
= 0,

∂PN

∂v
= 0. (14)

Umbilical points can be isolated or form lines or regions.
They are classified into two types based on the stability with
respect to small perturbations: generic and non-generic.
Generic umbilical points are stable with respect to small
perturbations. Isolated generic umbilical points are further
categorized into three types: lemon, star and monstar as
shown in Figure 1 [3]. The type of the isolated generic
umbilical points can be determined by the index and the
number of lines of curvature passing through the umbilical
point. The index is the amount of rotation that a straight
line tangent to lines of curvature experiences when rotating
in the counterclockwise direction along a small closed path
around the umbilic [21]. The index can distinguish the star
type umbilical point from the monstar or lemon type um-
bilical point, and the number of lines of curvature passing
through the umbilical point can discriminate between the
lemon type, and the monstar or star type umbilical points.
One line of curvature passes for the lemon type umbilical
point whereas three pass through the umbilic of monstar
and star types. The criterion distinguishing monstar from
star type is that all three directions of lines of curvature
through a monstar umbilic are contained in a right angle,
whereas in the star type umbilical point case, they are not
enclosed in a right angle [21]. For details, see [3, 21, 25].

Lemon Star Monstar

Figure 1: Three generic umbilics

3. EXTRACTION OF UMBILICS
Umbilical points appear in various forms on a free-form

surface such as isolated points, lines or regions. Because of
the singular behavior of the principal direction field around
the umbilics, information on their locations is important in
surface-intrinsic-wireframing (see Section 4), and in selec-
tion of reference points for matching. Moreover, isolated
generic umbilical points need to be located and classified
for the strong test of decision algorithms for similarity (see
Section 7). Therefore, a robust and efficient algorithm for
extraction of umbilical points and regions is necessary, and
is presented below.

The quadtree decomposition is used to extract umbilical
points or regions from a free-form NURBS surface. Such
decomposition has been used for various purposes such as
intersection problems [8] and computer graphics [29]. Com-
bining the convex hull property of the Bernstein polynomials,
the quadtree decomposition provides an efficient method for
extraction of umbilical points for the free-form NURBS sur-
face, especially when the umbilics are not isolated.



A NURBS surface is first subdivided into rational Bézier
surface patches by knot insertion and the governing equa-
tions (13) are formulated for each resulting rational Bézier
surface patch, which are reduced to equations (14). The
graph of z = PN (u, v) (0 ≤ u, v ≤ 1) is represented over the
uv parametric plane. The condition PN (u, v) ≥ 0 assures
that no portion of PN lies below the uv plane, i.e. PN has
no negative value. Suppose that PN = (u, v, PN ). Given an
integral Bézier surface patch of degree m and n in u and v,
PN (u, v) in the bivariate Bernstein form is given by [21]:

PN (u, v) =

10m−6
∑

i=0

10n−6
∑

j=0

pijBi,10m−6(u)Bj,10n−6(v), (15)

and for a rational Bézier surface patch of degree m and n in
u and v, PN is given by [21]:

PN (u, v) =

24m−6
∑

i=0

24n−6
∑

j=0

pijBi,24m−6(u)Bj,24n−6(v), (16)

where pij are Bernstein coefficients. Then the detection
problem is reduced to find a set of (u, v) which satisfy PN (u, v)
= 0, or the zero-set of a bivariate Bernstein polynomial (15)
or (16). An adaptive quadtree decomposition on the uv do-
main is used to narrow down regions possibly containing
umbilical points. A rectangular domain is subdivided into
four rectangular domains at the mid points of u and v using
the de Casteljau algorithm. This algorithm can be robustly
executed in rounded interval arithmetic. At a depth d, there
are at most 4d nodes and each node has a domain of size
r2−d ≤ u ≤ (r + 1)2−d and s2−d ≤ v ≤ (s + 1)2−d where
r and s are integers of 0 ≤ r ≤ 4d−1 and 0 ≤ s ≤ 4d−1,
respectively. Figure 2 shows an example of the quadtree
decomposition. The depth of the quadtree depends on the
user-specified size of subdivided regions.

0 1

1

0.5

0.5 0

1

2

depth (d)

Figure 2: An example of the adaptive quadtree
decomposition (The marked dark domains indicate
those which possibly contain umbilical points.)

The strategy of the adaptive quadtree decomposition al-
gorithm for extraction of umbilical points is to eliminate the
regions which do not include any umbilical points using the
convex hull property. The convex hull property determines if
a subdivided region does not contain roots of PN (u, v) = 0
or not. This property assures that if all Bernstein coeffi-
cients in a subdivided region are positive, then the Bézier
surface patch in that region should lie above the uv plane,
which means that no umbilical point exists in the region.
Note that the reverse is not necessarily true. The algorithm
checks the signs of the Bernstein coefficients in a subdivided

region. If all of them are positive, the node of the corre-
sponding region is marked as a non-umbilic region. The
algorithm stops at a depth df where the size of the regions
of the nodes at df is less than the user defined tolerance. We
traverse the tree and collect the unmarked nodes to produce
the regions which possibly contain umbilical points.

It is not known a priori how many nodes will be gener-
ated in general. But because we can estimate the maximum
depth required to achieve a given accuracy, we can perform
the worst case analysis. Given a tolerance δumb, the algo-
rithm stops when the size of a subdivided domain at a depth
d, or 2−d is less than δumb. Let us assume that 2−d < δumb

and the algorithm has stopped. Subdivision happens twice
at every node up to depth d − 1. Therefore, the total num-
ber of applications of the de Casteljau algorithm becomes
2

∑d−1

j=0
4j . For a Bézier surface patch of degree m and n in

the u and v, the application of the de Casteljau algorithm
in u parameter requires O(m2). Hence, the complexity of
the worst case is reduced to O(4d(m2 + n2)).

The IPP algorithm [21, 25, 30] can also be used for extrac-
tion of umbilics. But when the IPP algorithm encounters
regions of umbilical points, it slows down dramatically. The
quadtree decomposition method is efficient in dealing with
lines or regions of umbilical points because it employs an
adaptive subdivision scheme and only requires subdivision
using the de Casteljau algorithm, whereas the IPP algorithm
needs not only subdivision but also calculation of convex
hulls and projection onto a hyperplane. However, since it
belongs to the subdivision class of methods, the proposed
method is unable to differentiate multiple roots [30, 25].

Examples
An integral bi-cubic Bézier surface patch [21] is used for
extraction of isolated umbilical points as in Figure 3. The
patch contains five isolated umbilical points. Table 1 sum-
marizes the exact parametric values of each umbilical point
adapted from [21] and the boxes from the subdivision ex-
traction algorithm. The calculation is performed with a tol-
erance of δumb = 0.005. Table 1 shows that the estimated

Exact Location Estimation
No. (u, v) [ua, va] × [ub, vb]
1 (0.211, 0.052) [0.2109, 0.0508] × [0.2148, 0.0547]
2 (0.211, 0.984) [0.2109, 0.9807] × [0.2148, 0.9844]
3 (0.789, 0.052) [0.7852, 0.0508] × [0.7891, 0.0547]
4 (0.789, 0.984) [0.7852, 0.9807] × [0.7891, 0.9844]
5 (0.500, 0.440) [0.4961, 0.4375] × [0.5039, 0.4414]

Table 1: Comparison of positions of isolated umbil-
ical points

boxes contain the exact location of the umbilical points com-
puted via the IPP algorithm solving (14) at a higher preci-
sion of 10−12. The next example shows a line of umbilical
points on a surface as in Figure 4. The input surface is
a developable cubic-linear surface adapted from [18]. The
surface has an inflection line at u = 0.5754 computed via
the IPP algorithm with a precision of 10−12. The proposed
algorithm with a tolerance δumb = 0.005 produces a series
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Figure 3: An example of isolated umbilical points
on uv domain and the surface

of boxes which contain 0.5754 as follows:

[0.5742, 0.0] × [0.5781, 0.0039] ,

[0.5742, 0.0039] × [0.5781, 0.0078] ,

...

[0.5742, 0.9961] × [0.5781, 1] .

Those boxes are mapped onto the surface in a series of small
boxes as shown in Figure 4.

Inflection line
(u = 0.5754)

Figure 4: An example of a line of umbilical points

An example of extraction of a planar region is presented
in Figure 5. It is a bicubic B-spline surface which is partially
planar, with 20×20 control points in the u and v parametric
directions. The extracted planar region of the surface is
shown in Figure 5, and the tolerance used is δumb = 0.05.

4. INTRINSIC WIREFRAMING
In this section, a method for surface-intrinsic-wireframing

using lines of curvature and geodesic curves is explained,
which will not be affected by parametrization, any rigid
body transformation and representation methods. From this
wireframe, reference points are selected for comparison and
surface matching.

4.1 Overall Structure

Figure 5: Extraction of planar region

An algorithm for the construction of intrinsic wireframing
is shown in Figure 6. A NURBS surface is provided as input.
As the principal directions are indeterminate at umbilical
points, we need to locate such points prior to wireframing.
Next a starting point is selected, from which wireframe cre-
ation begins. It continues until lines of curvature cannot
be traced any longer. The remaining area is covered with
geodesic curves. If the entire surface has been wireframed
sufficiently densely according to appropriate user-specified
thresholds, the algorithm stops.

Start

Input Surface

Locate umbilical
points

Choose a starting
     point

Construct wireframe
using lines of 

curvature

Construct wireframe
using geodesics

Wireframing 

Using lines 
of curvature

is complete?

is possible?

End

Yes No

10

12

14

16

22

18 20

Yes

No

Figure 6: A diagram of the algorithm

Input Surfaces and Umbilics (Steps 10 and 12)
Information on exact locations of umbilical points is essen-
tial for wireframing using lines of curvature because the prin-
cipal directions cannot be uniquely defined there so that the
lines of curvature cannot be traced properly. Therefore, sur-
faces need to be provided as input to the algorithm with
complete information of isolated umbilical points, spherical
or planar regions, or lines of umbilical points extracted by
using the quadtree decomposition method of Section 3.

Starting Points (Step 14)
Either a star type umbilical point or a non-umbilical point
can be chosen as a starting point for wireframing because the
maximum and minimum lines of curvature radiate from the
point in an alternating pattern so that a simple algorithm is
sufficient and the resulting mesh is more well-proportioned.
The other two types of umbilics, i.e. lemon and monstar, are
not appropriate for this purpose. Three lines of curvature
pass through a star umbilical point, each of which changes
its attribute from the maximum line of curvature to the min-
imum line of curvature or vice versa. Therefore, at the star
type umbilical point, we can imagine that six lines of curva-
ture radiate from the umbilical point so that we can use up
to six initial directions for tracing lines of curvature. When
there is no umbilical point on the surface, a non-umbilical
point is chosen as a starting point. The non-umbilical point



has the maximum and minimum lines of curvature intersect-
ing orthogonally. Thus, we can choose up to four directions
for tracing the lines of curvature.

Wireframing with Lines of Curvature (Step 18)
Lines of curvature are calculated by solving equations (5) or
(6) using for example the fourth order Runge-Kutta method.

An intersection point of the maximum and minimum lines
of curvature can be calculated accurately using Newton’s
method. Let us assume that a maximum line of curvature
L1 and a minimum line of curvature L2 intersect as shown
in Figure 7. Using the arc length s1 as a parameter, L1 can
be represented as

u1 = u1(s1), v1 = v1(s1). (17)

Similarly, L2 is

u2 = u2(s2), v2 = v2(s2), (18)

where s2 is the arc length parameter. The problem can be
stated to find s1 and s2 so that

s 1 s 2

u (s ) = u2(s 2)1 1

Min.

V V

V

Max.

1 2

3

1 1v (s ) = v2(s 2)

Figure 7: Intersection of lines of curvature

F(x) =

(

f(s1, s2)
g(s1, s2)

)

=

(

u1(s1) − u2(s2)
v1(s1) − v2(s2)

)

=

(

0
0

)

,

(19)

where x = (s1, s2)
T . The multivariate Newton’s method can

be adopted as a solution method. Equation (19) is Taylor
expanded to obtain F(x + δx) = F(x) + J · δx, where δx =
(δ1, δ2)

T and J is the Jacobian matrix of F which can be
calculated numerically using the equations (5) or (6). Two
tolerances δ1 and δ2 for the variables s1 and s2 are provided
for termination of the iteration of Newton’s method.

Geodesic Wireframing (Step 20)
In a region where the algorithm using lines of curvature fails,
i.e. in the neighborhood of an umbilical point (except the
umbilical point used as a starting point) and near a bound-
ary or in an umbilical region, a geodesic curve can be used
to complete wireframing. A geodesic problem comes in the
form of a boundary value or an initial value problem. How-
ever, the problem arising in wireframing is always formu-
lated as a boundary value problem (BVP) and a solution
method for BVPs is adopted. Two points are selected and a
geodesic line is calculated which connects them. As an ini-
tial approximation, a straight line connecting two boundary
points is used, from which a solution is obtained iteratively
by using the relaxation method, see [25, 27, 17].

4.2 Methods for Constructing Quadrilateral
Meshes

The proposed method is semi-automatic so that in or-
der to complete a wireframe of a free-form surface the user

needs to work interactively. An automatic procedure han-
dles wireframing using lines of curvature. After a starting
point has been selected, the routine constructs quadrilat-
eral meshes (mostly orthogonal meshes) radiating from the
starting point. An outline of this procedure follows:

1. Advance L1 and L2 from V0 by a user defined distance
to reach V1 and V2 points as shown in Figure 8. Here,
we assume that L1 and L2 are the maximum and the
minimum lines of curvature, respectively.

2. Choose the minimum line of curvature (L′

1) at V1 and
the maximum lines of curvature (L′

2) at V2.

3. Find an intersection point V3 of L′

1 and L′

2.

V

V
V

V

0

1

2

3

L
L

L
L

1

1

2

2
’

’

Max.Min.

Figure 8: A diagram for meshing algorithm

This procedure continues until no more intersection point
can be obtained, i.e. when lines of curvature hit either the
boundary or umbilical points. In a region that lines of cur-
vature cannot cover, the user inserts additional nodes and
connects them using geodesic curves. Figure 9 shows an
example of intrinsic wireframing. This example has 3 star
umbilics and consists of 413 nodes, 356 quadrilateral and 14
triangular elements. A computer program was developed to

Figure 9: Intrinsic wireframe

integrate all functions that are used to generate an intrinsic
wireframe of a NURBS surface. It consists of two windows.
One is to visualize a surface and wireframe in 3D space and
the other, which is denoted as the control window, is to pro-
vide an interface for a user to interact with the wireframe
when user input is needed. The visualization window uses
OpenGL. It provides functions for rotation and scaling for
better visualization. The control window shows the current
status of the parametric domain during wireframing. Sev-
eral options are provided for interactive operations. The



language used in the development is C++. A set of window
managing libraries, Qt-2.3.1, are used for the GUI.

5. MATCHING METHODS
Matching is a process determining a rigid body motion

(translation and rotation) which makes two objects match as
closely as possible [12]. Two methods for matching are used.
Using the integral properties such as the moments of inertia,
volume and principal moments of inertia, a rigid body mo-
tion can be found to align two objects. The other approach
is to use intrinsic properties on the surface of objects. This
method, denoted as the KH method can be applied not only
to global matching but also to partial matching.

5.1 Moment Method
Matching via integral properties is used for solids. The

integral properties for solids A and B, i.e. centroids (centers
of volume) and moments of inertia assuming uniform den-
sity equal to one, are calculated using Gauss’s theorem or
the divergence theorem which reduces volume integrals to
surface integrals. The inertia tensors of solids A and B are
constructed. The inertia tensor is a 3× 3 square symmetric
matrix, whose diagonal terms Ixx, Iyy and Izz are called the
moments of inertia and the remaining three terms are called
products of inertia. Principal moments of inertia and their
directions are obtained via an eigenvalue problem [28].

Once the centroids and principal directions of both solids
are calculated, solids A and B are translated and rotated so
that their centroids and principal axes of inertia coincide. If
necessary, solid B is uniformly scaled based on the relative
volumes of the two solids.

There are cases where ambiguity in matching arises when
the principal moments of inertia are used for matching. Since
for each principal axis, two opposite directions are possible
so that in total eight matching cases can be obtained. A
right-handed coordinate frame assumption can reduce the
eight matching cases to four [11]. Such ambiguity in match-
ing the directions of the principal moments of inertia can
be resolved by evaluating the sum of the squared distances
calculated at reference points for comparison and choosing
one direction which yields the minimum value.

5.2 KH Method
The KH method [15] establishes correspondence between

two surfaces using the surface intrinsic properties and finds
a rigid body transformation to match the two surfaces as
closely as possible. Three points are selected on surface
B and three pairs of the Gaussian (K) and the mean (H)
curvatures are evaluated at these three points. Then the
corresponding points on A which have the same curvature
values as those on surface B are located by solving a system
of equations for the Gaussian and the mean curvatures on A
using the Interval Projected Polyhedron algorithm [30, 25].
After the correspondence has been established, a rigid body
motion is calculated. This method relies only on the surface.
Therefore, it can be applied to solids bounded by NURBS
surfaces. Moreover, it can be used for partial surface local-
ization.

6. SIMILARITY EVALUATION
Suppose we have two surfaces A and B. For solids, the

bounding surfaces are considered. A matching method is

used to align B with A. Then, the matched surfaces are
compared for similarity with the following tests.

6.1 Tests of Matching
The ε-offset and the principal curvature tests are per-

formed at the node points obtained from the surface intrinsic
wireframe.

ε-Offset Test (Weak Test)
The objective of this test is to determine how close B is to A
in terms of the Euclidean distance. The squared minimum
distances between A and B are calculated and checked if all
of them are within an ε-distance bound or one of the sur-
faces is within an ε-offset of the other. In [34], the squared
distance function and its stationary points between two vari-
able points located on two different geometric entities are
investigated. Based on this technique, the distances are cal-
culated between two surfaces A and B.

Principal Curvature Test (Intermediate Test)
The principal curvatures and their directions are used in this
similarity test. The differences of the principal curvatures
and directions between two surfaces are calculated and used
for a similarity decision.

Umbilic Test (Strong Test)
Every closed orientable surface (of differentiability class C3)
with a genus different from one (hence being topologically
different from the torus) has at least one umbilic [5] and var-
ious free form surfaces may contain umbilical points. How-
ever, the availability of this test depends on the existence of
isolated generic umbilics. This test is based on the fact that
generic isolated umbilics and the patterns of lines of curva-
ture around them are stable to perturbations so that their
qualitative properties are preserved and checks whether their
locations and patterns for surface A match those for surface
B.

6.2 Assessment of Matching
Let us denote k node points of the surface intrinsic wire-

frame from surface B as Pi (i = 1, 2, · · · , k). Here sur-
face intrinsic sampling methods using geodesics or lines of
curvature are preferred because they are independent of
parametrization. Next, find the minimum distance foot-
points Qi on surface A of Pi. The IPP algorithm can be
used to find these minimum distance footpoints robustly as
in [34]. After finding the footpoints Qi on A, calculate the
following quantities between Pi and Qi (i = 1, 2, · · · , k).

• Euclidean distance of |Pi − Qi| : ε0i

• The second derivative properties

– Difference of principal curvatures : ε1i, ε
′

1i

– Difference of principal directions : ε2i

Maximum values, average values and standard deviations
can be calculated for each ε0i, ε1i, ε′1i and ε2i to provide
quantitative statistical measures to determine how similar
the two surfaces are in a global manner.

Local similarity can be assessed with εji at corresponding
positions. Each εji (j = 0, 1, 2) is normalized with respect
to the maximum value of maxi(εji). Tolerances δj (j =
0, 1, 2), corresponding to εji, are used to extract the regions



of interest. Namely, the regions in which εji > δj are those
where the two surfaces are different. As an extension of this
idea, the similarity between two surfaces can be provided
as a percentage value. First, the difference values εji are
located over the uv plane. Then the uv plane is subdivided
into a set of square grids of size (δs × δs) where δs is a user
defined value. The total number of the square meshes is
denoted as DT . Given a tolerance δj , the number of the
squares Dε, which contain at least one point satisfying εji >

δj , is found. Then,
(

1 − Dε

DT

)

× 100 becomes a percentage

value of similarity. The squares which do not contain points
satisfying the condition indicate the regions where the two
surfaces are equivalent under a given test with a tolerance
δj .

7. DECISION ALGORITHMS
Two similarity decision algorithms are proposed in this

section. They consist of three tests as described in Section
6.1 and provide quantitative results with which one can de-
termine whether one surface is a copy of another surface or
not. Algorithm 1 uses the maximum deviation value at each
test for a decision, while Algorithm 2 employs statistical
methods for a decision. Each algorithm produces hierarchi-
cal results for similarity between two surfaces. In the subse-
quent sub-sections, it is assumed that surfaces A and B are
matched, wireframed and all umbilical points are detected.

7.1 Algorithm 1

A

Perform weak test

Perform intermediate test

Perform strong test

Pass/Fail?

Pass/Fail?

Pass/Fail?

Does A have
at least one
  umbilic?

Fail

Pass: B derived from A (weak pass)

Fail

Fail

Pass

No

Yes

B derived from A 
(intermediate pass)

B derived from A
 (strong pass)

Increase εd?

Increase εa?

B derived from A 
(intermediate pass)

No

B not derived 
   from A 

Yes

Yes

No

B derived from A
  (weak pass) 

Pass: B derived from A (intermediate pass)

Figure 10: Algorithm 1

Two surfaces are provided as input to the first test or a
weak test (ε-offset test) as shown in Figure 10. Then a de-
cision is made that surfaces A and B are within or out of
tolerance εd based on the Euclidean distance. If the maxi-

mum distance between corresponding points on surfaces A
and B is within εd, then surface B is considered to have
passed the weak test and determined to be a copy of A un-
der the weak test. On the other hand, if the distance is
greater than tolerance εd, the test fails. In such case, there
are two possible courses of action. If εd is not large with re-
spect to the size of surfaces, the user may decide to increase
it and retry the weak test. If εd is large, then the user may
decide to stop the process and decide that B is not derived
from A.

If the weak test is passed, then an intermediate test (prin-
cipal curvature and direction test) may be performed. The
procedure is similar to that of the weak test. If the test
succeeds, B is considered to be a copy of A under the in-
termediate test. If it fails, the user may decide to stop the
process and conclude that B is derived from A with respect
only to the weak test or try the test again with a new εa.

If no isolated generic umbilical point exist, the process
stops and it is concluded that B is derived from A under
the intermediate test. If an umbilic exists, the strong test
(umbilic test) may be performed. If the test succeeds, it is
concluded that B is derived from A under the strong test.
Otherwise, it is decided that B is a copy of A under the
intermediate test.

7.2 Algorithm 2

A

Perform weak test

Perform strong test

 Compute and evaluate
statistics of weak test

Fail

Perform intermediate test

B derived from A
 (strong pass)

      Compute and evaluate
statistics of intermediate test

 B not derived from  A Pass/Fail?

Pass: B derived fro m A (weak pass)

 Pass/Fail?
Fail

B derived from A (weak pass)

Pass: B derived from  A (intermediate pass)

 Pass/Fail?
Fail

B derived from A 
(intermediate pass)

Pass

  Compute and evaluate
statistics of strong test

 Does A have at least
     one umbilic?

No
B derived from A 
(intermediate pass)

Yes

Figure 11: Algorithm 2



Items Solid A Solid B
Volume (mm3) 83.794 18.007

Center of Volume (mm) (2.689 × 10−5, 7.016 × 16−5, 16.907) (12.628,−8.354, 17.216)
Principal Moments 1951.228, (0.0, 0.0, 1.0) 150.437, (0.259,−0.330, 0.908)
of Inertia (mm5) 4867.277, (1.0, 0.0, 0.0) 373.973, (0.951,−0.076,−0.299)

and direction cosines (x,y,z) 6046.463, (0.0, 1.0, 0.0) 464.746, (0.168, 0.941, 0.295)

Table 2: Integral properties of solids A and B

The overall procedure is the same as Algorithm 1 except
that no iteration is involved, see Figure 11. In this algo-
rithm, a decision is made based on statistical information
obtained in each test. From the weak test, statistics of the
distance function are computed and evaluated by the user or
a computer program. If the statistics pass a set of threshold
tests, then it is concluded that B is derived from A under
the weak test, and then the intermediate test begins. Oth-
erwise, it is concluded that B is not derived from A.

The intermediate test constructs statistics of intrinsic prop-
erties, such as angle differences of the principal directions.
A determination is made as to whether the statistics pass a
set of threshold tests. If the threshold tests are negative, it
is concluded that B is derived from A under the weak test.
Otherwise, it is concluded that B is derived from A under
the intermediate test.

Similarly, depending on the existence of umbilical points,
the strong test may be performed. Statistics of position
differences of the locations between corresponding isolated
generic umbilics are considered in this test. A decision is
made as to whether the statistics pass a set of threshold
tests. If the tests are negative, B is concluded to be derived
from A under the intermediate test. Otherwise, it is decided
that B is derived from A under the strong test.

8. EXAMPLES

8.1 Matching

Moment Method
Examples are presented to demonstrate the proposed algo-
rithms. Solids bounded by bicubic integral B-spline surface
patches A and B are used. Solid A is enclosed in a rectan-
gular box of 25mm×23.48mm×11mm. Here, the height of
solid A is 25mm. Figure 12 shows a sequence of operations
for matching of the two surfaces using the principal moments
of inertia of input solids. In this example, for clarity, only
part of the boundary surfaces of the solids are displayed.
The smaller solid has been translated, rotated, uniformly
scaled and reparameterized. In Figure 12-(A), two bound-
ary surfaces of the input solids are shown with their control
points. Those two surfaces have similar shape but different
numbers of control points and parametrization. Matching
the centroids of the two solids is performed by translating
the small solid by the position difference between the cen-
troids, which is demonstrated in Figure 12-(B). The orien-
tation of the largest principal moment of inertia of the solid
A is aligned to that of the largest one of the solid B. Sim-
ilarly, the remaining two orientations are aligned based on
the values of the principal moments of inertia. After match-
ing the orientations of the principal moment of inertia, the
two solids are aligned in their orientations as shown in Fig-
ure 12-(C). Figure 12-(D) shows that the two solids match

(B)

(D)(C)

(A)

Figure 12: Matching via integral properties

after uniform scaling obtained from the ratio between the
volumes of the two solids, 4.651, is applied to the small
solid. The centroids, volumes, principal moments and their
directions are given in Table 2.

KH Method
A partial matching example using the KH method is pre-
sented in Figure 13. Figure 13 shows half of a car hood.
It is represented by bicubic B-splines. The hood has 64
(8 × 8) control points (enclosed in a rectangular box of
13mm × 12mm × 6mm) The relative error, i.e. the max-
imum distance divided by the square root of the surface
area, is 0.00484.

(A) (B)

Figure 13: A partial matching example of a hood



Criteria Max Average Standard Deviation
ε-offset (mm) 0.03456 0.00814 0.00665

Maximum principal curvature (mm−1) 0.07872 0.01572 0.01530

Minimum principal curvature (mm−1) 0.10577 0.01411 0.02165
Principal direction (rad) 0.70052 0.05657 0.11385

Table 3: Statistics of the quantities defined in Section 6.2 for each test

8.2 Copyright Protection
In this section, the two proposed similarity decision al-

gorithms are demonstrated with the bottle example used
for the moment method. After aligning two solids A and
B shown in Figure 12, we are ready to assess the similar-
ity between them. Here, part of the bounding surfaces are
used for similarity checking. The surfaces are represented
as bicubic B-splines and one surface has 64 (8 × 8) and the
other 144 (12×12) control points with different parametriza-
tion. Both surfaces are enclosed in a rectangular box of
25mm × 23.48mm × 11mm. The 413 node points are used
from the wireframe given in Figure 9. The quantities pro-
vided in Section 6.2 are calculated and summarized in Table
3. All umbilical points for the two surfaces are located as
shown in Figure 14. The Euclidean distances of the corre-

1 2 3
Distances (mm) 0.08099 0.02954 0.08115

Table 4: Euclidean distances between the corre-
sponding umbilics

Figure 14: Comparison of lines of curvatures and
umbilical points

sponding umbilical points are summarized in Table 4.
In order to use Algorithm 1, we have to specify tolerances

for ε0, ε1, ε′1 and ε2. Depending on each tolerance, we can
determine which test has passed or failed. Statistical infor-
mation given in Table 3 is obtained for Algorithm 2. Sup-
pose we have 0.01 as a tolerance for the weak test and sub-
divide the uv region into 400 square sub-regions (each box
size of 0.05 × 0.05). The total number of sub-regions which
contain footpoints Pi satisfying εi > 0.01 is 31. Therefore,
we can conclude that two surfaces are similar by 92.25%
under the weak test with tolerance 0.01 and sub-region of
size 0.05 × 0.05. This can be visualized as in Figure 15-(A).
Here, the boxes indicate the regions which have at least one
point with deviation larger than the tolerance 0.01. The re-
sults of the intermediate test using the maximum principal

(A) (B)

Figure 15: (A) Weak test (ε-offset) and (B) inter-
mediate test (maximum principal curvature) based
on Algorithm 2

curvature is visualized in Figure 15-(B). Under the inter-
mediate test for the maximum principal curvature with a
tolerance 0.03, the similarity value between two surfaces is
91.25%. The strong test can also be performed based on the
umbilical points for both surfaces as shown in Figure 14.
Three star type umbilical points are identified for each sur-
face, and the Euclidean distances between the correspond-
ing umbilical points are calculated in Table 4. The types
of the corresponding umbilical points match, and the posi-
tion differences are small compared to the size of the object.
Therefore, we may conclude that the strong test has passed.

The next example shows a case that one surface has been
deformed so significantly that the strong test fails. Two sur-

B

A

Figure 16: Surfaces for the failure case

faces in Figure 16 are represented as bicubic B-spline surface
patches with 64 (8 × 8) control points, and are enclosed in
a rectangular box of size 25mm × 23.48mm × 11mm. The
control points of surface A have been changed such that the
difference of the bottom portion of surfaces A and B is no-
ticeable. The surfaces are matched using the KH method



Criteria Max Average Standard Deviation
ε-offset (mm) 2.13435 0.26950 0.47164

Maximum principal curvature (mm−1) 0.19392 0.00222 0.03114

Minimum principal curvature (mm−1) 0.10979 0.01265 0.02135
Principal direction (rad) 1.54548 0.15166 0.27892

Table 5: Statistics of the quantities defined in Section 6.2 for the failure case

Test Tolerance Similarity (%) Figure
ε-offset (mm) 0.48 86.50 17-(A)

Maximum principal curvature (mm−1) 0.04 88.50 17-(B)
Minimum principal curvature (mm−1) 0.02 89.00

Principal direction (rad) 0.30 92.50

Table 6: Quantitative similarity values for the failure case

with three seed points selected around the neck of surface
A. A number of 366 node points are used for similarity
tests. The statistical information for the similarity tests is
summarized in Table 5. To assess local similarity, the uv
parameter space is subdivided into 400 equal square boxes.
Under the user-specified tolerances for each test, the quan-
titative similarity measures are summarized in Table 6. Fig-
ure 17 illustrates each test. The boxes indicate the regions
where the condition for each test is not satisfied. All um-
bilical points have been calculated using the IPP algorithm
as shown in Figure 18, which are provided as input to the
strong test. Surface B has three star type umbilical points,
whereas surface A has two umbilics of star type. Because
this is a global matching case and the number of umbilical
points is different, it is concluded that the strong test fails.

(A) (B)

Figure 17: (A) ε-offset (B) Maximum principal cur-
vature

9. CONCLUSIONS
We have addressed a problem of matching NURBS sur-

face patches and solids bounded by NURBS surface patches,
and introduced algorithms for a similarity decision. As aux-
iliary steps, methods of detection of umbilical points and
construction of an intrinsic wireframe have been also pro-
posed.

Quantitative assessment of matching is another issue dis-
cussed in this paper. Three hierarchical tests are proposed,
and two decision algorithms are developed which provide
systematic and statistical measures for a user to determine
the similarity between two geometric objects.

Figure 18: Umbilical points and lines of curvature

The proposed matching and similarity checking techniques
can be used for copyright protection of NURBS surfaces. A
user can compare a suspicious surface with a surface regis-
tered with an independent repository to check if the suspect
surface is a copy of the copyrighted one. The partial match-
ing technique may provide a method to determine whether
or not part of the copyrighted surface has been stolen. Sim-
ilarity decision depends on user-defined tolerances. There-
fore, these tolerances need to be defined by an independent
party.

Extension of this work to deal with the problem of match-
ing and similarity evaluation for geometric objects expressed
in different representation forms such as polyhedra and range
data is a subject recommended for future study.
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