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Abstract 

In this paper we will extend the concept of Voronoi di- 
agrams to parameterized surfuces where distance between 
two points is defined as infimum over the lengths of surface 
paths connecting these points. We will present a method to 
compute Voronoi diagrams on these surfuces. 

1. Introduction and related works 

The Voronoi diagram is one of the most fundamental 
data structures in computational geometry. The topic is well 
researched and understood, see [ 11 for an overview. How- 
ever, most previous works deal with Voronoi diagrams in 
Euclidean or L1 space, with exception of [4]. Klein looks 
at Voronoi diagrams from a different point of view, defining 
a Voronoi region as intersection of half-planes defined by a 
set of (almost) arbitrary curves and the Voronoi diagram as 
union of the borders of its regions. 

Zn this paper, we will employ a divide and conquer 
scheme to calculate Voronoi diagrams on parametric sur- 
faces. The crucial part is here to compute the Voronoi dia- 
gram of two points, i.e. their medial curve. Until recently, 
there were no proper tools available to achieve this goal. 
However, [5] fills this gap, providing us with the means to 
calculate the medial curve of two points on a parametric 
surface. 

Possible applications include the generation of parame- 
terization independent triangular meshes on parameterized 
surfaces. Since geodesic Voronoi diagrams as defined here 
depend only on the geometry of the surface and not on its 
parameterization, the dual geodesic Delaunay triangulation 
could be used as a basis for such a mesh. 

2. Definitions and Background 

Let r(u, v) = ( z (u ,  v), y(u,  U ) ,  z ( u ,  v ) ) ~  be a regular 
parameterization of a given surface S and 1 C R2 its pa- 
rameter domain. Let p ,  q E S be two points in parameter 

space of S and r(p), r(q) the corresponding surface points. 
Let Pp,q denote the set of all paths in S connecting r(p) and 
r(q). The distance d(p ,  q )  between r(p) and r(q) is defined 
as the infimum of lengths of all paths c E Pp,q. 

If I is a closed rectangle and r : I -+ S is C2-smooth, 
then there exists a minimal path c,in E Pp,q whose length 
equals d ( p ,  4). If cmin stays away from the boundary of the 
surface patch S = r ( I ) ,  then c,in is a geodesic and satisfies 
the geodesic differential equation (2) (c.f. [SI). Since this 
property allows us to measure distances on S by computing 
the length of geodesics, we refer to d(p ,  q )  as geodesic dis- 
tance between r(p) and r(q).  Note that d defines a metric 
on both S and I .  since 

holds for all p ,  q,  T E I .  

points in the parameter domain of r. Let 
Let now P = {PI,. . . , p n } ,  pi  E I be a set of n distinct 

(1) 

M ( p ,  q )  is the equidistantial set of p and q. M ( p ,  q )  divides 
I in two sub-regions; D ( p ,  q )  is the region containing p.  
The set 

M(P,  4 )  = (2 E Ild(Z,P) = 4 4 ,  .)I 
%,q)  = { z  E 1Id(z,p) < 4 4 , z ) I  

D ( ~ , P )  = n D ( ~ , ~ )  
q € P  
4 f P  

consists of all points z E I for which the geodesic distance 
between r(z) and r(p) is smaller than the geodesic distance 
to any other point r (q) ,  p # q E P.  D ( p ,  P )  is called the 
(open) Voronoi region of p with respect to P .  The union 

V ( P )  = U m P , P )  
P € P  

of all region boundaries is called the Voronoi diagram of P .  
The common boundary of two Voronoi regions is a Voronoi 
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edge. A point where two Voronoi edges meet is called a 
Voronoi vertex. For every Voronoi vertex z ,  there are at 
least three distinct points p ,  q ,  T E P for which d(z,  T )  = 
d ( z , p )  = d(z,  q )  holds. 

2.1. Geodesic Voronoi diagrams versus Euclidean 
Voronoi diagrams 

The generalization of Voronoi diagrams on arbitrary sur- 
faces shows some special problems which do not occur in 
the Euclidean case. The first problem arises in comput- 
ing M ( p , q ) ,  the equidistantial set of two points. This is 
achieved easily in the Euclidean case, since here M ( p ,  q) 
is the straight line perpendicular bisecting the line segment 
that connects p and q. The tools needed to calculate M ( p ,  q )  
on parameterized surfaces are discussed in section 3.1. 

Some further complications follow directly from 
M ( p , q )  not being a straight line: If we employ a divide 
and conquer scheme to calculate the Voronoi diagram, we 
need to “sew up” the sub-diagrams obtained in the divide 
step. For this we need to compute the so called bisector 
of these two diagrams, the place where these sub-diagrams 
meet in the original diagram. In the Euclidean case, the bi- 
sector is made up of connected straight line segments and 
tends to infinity on both ends. This is not true in the case 
of arbitrary surfaces, making the problem of calculating this 
bisector a lot more difficult. 

Even more problems arise due to the fact that M ( p ,  q )  
can be a periodic curve, see section 4 for an example. 

2.2. General assumptions and constraints 

Throughout this paper, we will assume that S is a sur- 
face patch, i.e. the parameter domain of S is a finite rect- 
angle. This is not a serious restriction: Since 1P( < ca 
we can circumscribe the interesting region of V ( P )  by a fi- 
nite rectangle and restrict our calculations to the resulting 
patch even if the parameter domain of S is infinite. We will 
assume also that the distance d ( p ,  q )  between two surface 

3. Outline of the algorithm 

3.1. Computing M ( p ,  q) 

In order to compute M ( p ,  q )  on a parameterized surface, 
we need to employ several results and techniques from dif- 
ferential geometry that are too lengthy to introduce here 
from the very beginning. For basics in differential geom- 
etry, we refer to [3]. Throughout this paper, we will use ru, 
r,, ruu, ru,, rUu and r,, to denote the the first and sec- 
ond order partial derivatives of r. In this section, we will 
only give a short introduction to the tools needed to com- 
pute M ( p ,  4 )  for two points p and q, see [5 ]  for a thorough 
discussion of geodesic offsets and medial curves. We will 
however restate a well know theorem on geodesic curves, 
which allows us to calculate geodesics by means of a differ- 
ential equation: 

Theorem 3.1 For every point p of a regular parameterized 
su@ace S and every veclor w E Tp(S) ,  w # 0 there ex- 
ists an E > 0 and a unique geodesic curve ~ ( s )  c S, 
s E (--E,€) with ~ ( 0 )  == p and y’(0) = w. The curve 
(u(s),v(s)) in the parameter space of S with ~ ( s )  = 
r(u(s), w(s)) satisjies the system of diflerential equations: 

} (2) 
d’ + + 2r;2u’w’ + r92(w‘)2 = o 
d’ + r:1(u‘)2 + :!r;2urvr + r;2(v’)2 = o 

A proof of the theorem can be found in [3]. The coeffi- 
cients rfj in (2) are known as Christoffel Symbols. They 
are differentiable functions of the parameters U and v and 
can be obtained by solving the following system of linear 
equations: 

points r(p) and r(q) can be computed by calculating the 
length of a geodesic connecting r(p) and r(q). 

that every edge Of v(p) for 
I p l  > starts and ends at either a Voronoi vertex Or ex- 
tends to the boundary Of the parameter thus pre- 
venting “isolated edges” or “islands” in V ( P )  (see section 
4, figure 6 for an example of a Voronoi diagram contain- 
ing “islands”). Edges may start and end at the same point. 
Note that this restriction is weaker than requiring M ( p ,  q )  
to reach the border of the parameter domain for every p ,  
4 E P? P # q. 

These equations are grouped into three pairs of indepen- 
dent equations each haviing the determinant EG - F2 # 0, 
provided the surface parameterization r is regular. Fur- 
thermore, these equations determine all Christoffel symbols 
since they are symmetric with respect to their lower indices, 
i.e rfj = r:i. The coefficients E ,  F and G of the first fun- 
damental form ofr  are defined as 

we 

E := (ru,ru), F := (ru,rv), G := (r,,rv) 

(. , .) denotes the inner product. 
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3.1.1 

Definition 3.2 Let p = r(u,  w) E S be a point on a regular 
suiface S. For every to  E [0,27r) Tto denotes the arc length 
parameterized geodesic curve emanating from p in direc- 
tion cos toru + sin tor,. The vectors ru, r, are the partial 
derivatives of r. The set 

Geodesic circles and offset functions 

is called the geodesic circle around p with radius s. 

This notation has to be treated with some care. The dis- 
tance between p and points on the geodesic circle of radius 
s as defined above may actually be less than s. Consider 
e.g. a point p on the unit sphere and the geodesic circle of 
radius %f around p .  The distance on S between points on 
this geodesic circle and p is 5 < 9. We know however that 
geodesics emanating from p will be shortest paths between 
p and the geodesic circle of radius s iff no pair of distinct 
geodesics Tt0, emanating from p intersect before they 
reach this geodesic circle (c.f. [7]). 

Proposition 3.3 The geodesic circle around a given point p 
with radius SO can be represented as a parameterized curve 
a s 0  ( t )  

Proof: Every point T t o ( s o )  on the geodesic circle is the 
solution of the system of differential equations (2), which 
itself has a differentiable right hand side. By definition 3.2, 
the geodesic circle may be obtained by a differentiable vari- 
ation of t. By a classical result of the theory of ordinary 
differential equations, the solution obtained by this varia- 
tion is a differentiable function of t .  

Note that geodesic circles need not be regular. For in- 
stance, consider the unit sphere and a geodesic circle with 
radius 7r. This geodesic circle consists solely of the an- 
tipodean point of p.  

Definition 3.4 Let S be a regular parametric suiface pa- 
rameterized by r(u, U )  and let p be a point on S. The func- 
tion 0, : ( s ,  t )  + ( U ,  U )  dejined by 

is called the geodesic offset function on S with respect to 
P. 

By definition 3.4, Op(so ,  t o )  yields the ( U ,  w)-parameters 
of 7 6 ,  (SO), i.e. the point on the geodesic circle with radius 
SO and angle to.  Note that O,(SO, t o )  can be obtained by 
solving the geodesic differential equation (2). 

Proposition 3.5 The geodesic offset function is differen- 
tiable. Its partial derivatives asO, and at0,  are given 
by 

( s )  = (ru,  I-,) . d S 0 ,  (4) 
ako(t) = (ru,r,) . a@, (5)  

where (ru, r,) is the Jacobian matrix of r. 

Proof: The function 0, (s ,  t )  is solution of the geodesic 
differential equations (2) with its initial values depending 
differentiably on s ,  t. Thus 0 , (s ,  t )  is a differentiablefunc- 
tion. The equations above follow immediately by applying 
the chain rule. 

By solving the geodesic differential equations we not 
only obtain the parameters (u(s), v(s)) of the geodesic curve 
"yto (s) as stated above, but also (u'(s), v'(s)) which equals 
the partial derivative a,0,. With the following result we 
are able to compute &O,: 

Proposition 3.6 Let -yto ( s )  denote the arc length parame- 
terized geodesic curve emanating from p E S at angle t o  
and as(t) be the parameterization of the geodesic circle 
with radius s around p. For every SO,  t o  the tangent vectors 

( t o )  and -yio ( S O )  of the geodesic circle and the geodesic 
respectively are orthogonal to each othel: The signed length 
yto ( s )  = *11a;(to)l I ofthe geodesic circle's tangent vector 
satisfies the ordinary diferential equation 

where K ( s )  denotes the Gaussian curvature of S at 
r (0 , (s ,  t o ) )  = Tto (s). 

A proof of this proposition can be found in [5]. Initial val- 
ues for calculating y by numerically solving this differential 
equation are y(0) = 0, y'(0) = 1, see [2], p. 199-203 or [3] 
for a proof. 

3.1.2 Medial curves 

Exploiting proposition 3.6 we are able to derive an algo- 
rithm for computing the medial curve of two distinct points 
on a surface. Let p ,  q be two points on a parameterized 
surface S. The geodesic offset functions with respect to p 
and q shall be denoted 0 , (s ,  t )  and O,(s,  t ) .  Consider the 
vector-valued function F : R3 + R2 defined by 
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According to the implicit function theorem, a neighborhood 
J of cpo and differentiable functions T ,  $ : J + IR exist such 
that 

F(T(cp)> cp, $ ( c p ) )  = 0 

holds for every cp E J .  These functions induce a curve 
m(cp) in parameter space of S that has the property 

for every cp E J .  The corresponding curve r(m(cp)) =: 
p(cp) c S satisfies 

where T , , ~  and T,,+(~) are geodesics emanating fromp and 
q in directions determined by angles cp and $(cp )  in the 
tangential planes Tp ( S )  and Tq ( S )  respectively. In other 
words: ,u(cp) lies at geodesic distance r(cp) to both the 
points p and q where the distance is taken along the geodesic 

and y,,$(,+,p) respectively. The condition of regular- 
ity in (6) in more detail is det (d,O, - a,0,, &0,) # 0. 
Without loss of generality we can assume this holds for all 
cp E J ,  maybe after reducing J .  Differentiating equation 
(7) yields 

(390, - &O,, WJ,) 

and since the matrix is assumed to be regular for all cp E J 
we have 

This is a system of ordinary differential equations that can 
be used to trace m(cp), provided appropriate initial values 
can be found. The partial derivatives of 0, and 0, can be 
computed by means of the tools introduced in section 3.1.1. 

If we would use equation (9) to trace m(cp), the result- 
ing curve would be parameterized according to the angle cp 
of the geodesics emanating at p. This parameterization is 
somewhat unwieldy, making it especially difficult to esti- 
mate errors in approximations of m(cp). However, we are 
able to force m to be parameterized by its arc length by 
introducing one additional condition in equation (7). This 
yields the following system of equations: 

By differentiating the first equation of (10) we get 

With axO,,i, dxO,,i, i == 1 ,2 ,  x E {s, t }  denoting the i-th 
component of these two dlimensional vectors, the conditions 
above are equivalent to: 

We assume that neither &0, nor &0, vanish for the 
considered medial point. By using the first two equations of 
(1 1) to eliminate 4' and by introducing the abbreviations 

we obtain the modified system 

Note that Dz # 0 by aissumption. Some straightforward 
calculations finally lead to the following system of differen- 
tial equations, allowing us to trace m(t) parameterized by 
its arc length in parameter space: 

The sign in (13) must ble chosen according to sign(cp') = 
fsign(D2). 

Note that cp and II, are angles in the tangent planes Tp(S)  
and T,(S) respectively. Corresponding directions (U@,  w+), 
4 E { cp ,  $} in parameter space are obtained by applying the 
transformation 

F 
cos 4 - J p s i n  4 a 
,/ErF 

U 4  = - 

U4 = - 
sin 4 

where E = (ru, ru), F == (ru, r,) and G = (r,, r,) denote 
the coefficients of the first fundamental form of S at the 
considered point r(u, w). 
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Figure 1. Bisecting edges at a Voronoi vertex 

3.2. Building V ( P )  

V ( P )  is calculated employing a divide and conquer 
scheme, i.e. by dividing the set P in two subsets L and R of 
approximately equal size, recursively calculating V ( L )  and 
V ( R )  and “sewing” these back together. In C-like pseudo 
code: 
Voronoi diagram compute-voronoi (P  : Set of points) { 

L, R : Sets of points; 
V ( L ) ,  V ( R )  : Voronoi diagrams; 

if(lPI 5 1) { 
return 0; 

} else if (]PI == 2) { 
return medial curve of p1 and p2; 

divide P into sets L and R of roughly equal size; 
V ( L )  = compute-voronoi(L); 
V ( R )  = compute-voronoi(R); 
return merge-subdiagrams(V( L ) ,  V (  R)); 

} else { 

1 
Subdivision of P in two disjunct subsets L and R can 

easily be achieved by dividing the parameter domain of S 
along a straight vertical or horizontal line. Computing the 
medial curve of two points can be accomplished employ- 
ing the tools described above. The main difficulty lies in 
merge-subdiagrams, where we have to find those edges 
of V ( P )  which are neither part of V ( L )  nor V ( R ) .  

1 

Definition 3.7 Let P be ajinite set ofpoints, and L,  R c P 
a partition of P. A region of D(p,  P )  as dejined in ( I )  is 
called L-region or R-region i f p  E L o r p  E R respectively, 
An edge e 6 V ( P )  is culled L-edge if it is the common 
border of two L-regions, R-edge if it borders two R-regions 
and bisecting edge if it is the conimon border of both a L- 
and a R-region. 

The bisector of L and R (with respect to P)  is the set of 
all bisecting edges e E V ( P ) .  

We will now discuss some properties of the bisector. 

Proposition 3.8 The bisector of L and R consists offinitely 
many chains of consecutive edges; we will call these bisect- 
ing chains. Each bisecting chain either starts and ends at 
the border of the parameter domain of S or is a closed curve 
within the parameter domain. 

Proof: Since the bisector consists of edges of V ( P )  
and there are only finitely many of these the first claim is 
obvious. As for the second claim, let el be a bisecting 
edge and x a terminal point of el. Since el is a Voronoi 
edge, x must be either a border point of the parameter do- 
main of S or a Voronoi vertex. In the latter case, the set 
E := {ei E V(P)le-i n el = x} of Voronoi edges incident 
with x consists of at least two elements. By assumption, el 
is the common border of both a L- and a R-region. Thus 
there is at least one other bisecting edge ei E E continuing 
the bisecting chain; see left half of figure 1 for an illustra- 
tion. This shows that every bisecting chain either terminates 
at the border of the parameter domain of S or is a closed 
curve. 

Note that two or more bisecting chains can meet at a 
Voronoi vertex, see right half of figure 1. 

a 

Definition 3.9 Let X be the (straight) line in the parameter 
domain of S used to divide P into the subsets L and R. A 
Voronoi region D(p,  X ) ,  X E { L ,  R }  is called an outer 
region if X n D(p ,  X )  # 0. All other regions are called 
inner regions. 

Proposition 3.10 Let p E L, q E R. Ifboth D(p,  L )  and 
D(q,  R)  are inner regions there exists no bisecting edge 
e p , q  E V(P) .  

Proof It is obvious from definition (1) that D(p ,  L )  3 
D ( p ,  P )  and D(q,  R )  3 D(q,  P) .  Since ep,q c D(p,  P )  n 
D(q,  P )  c D(p,  L )  n D(q,  R) the proposition follows im- 
mediately from D(p,  L )  n D(q,  R)  = 0 

--- 
_ _ _ _ _ _ ~  
-~ 

a 
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Figure 2. Merging V ( L )  and V ( R )  

According to proposition 3.10 we can limit our search 
for starting points of bisecting edges to the outer regions of 
L and R. Since we assumed every Voronoi edge to start and 
end at a Voronoi vertex, it is sufficient to scan the borders 
of these outer regions for starting points of bisecting edges. 
Note that the border of an outer domain needs not to consist 
entirely of Voronoi edges, it may include parts of the bound- 
ary of the parameter domain of S ,  if the region extends to 
this boundary. 

Scanning edges for Voronoi vertices is not as difficult as 
it may seem: Since the Voronoi regions { D ( p ,  R) Ip E R }  
together with the edges {ele E V ( R ) }  form a partition of 
the parameter space of S ,  every point z in the parameter 
domain of S and thus every point on an edge e E V ( L )  
belongs to exactly one Voronoi region D ( p ,  R)  if it is not 
part of an edge f E V(R) .  If z E f and z is no Voronoi 
vertex of V ( R ) ,  there are exactly two points p1,pz E R 
with z E D(p;,  R). Even if z is a Voronoi vertex of V ( R ) ,  
we know which points are centers of regions incident with 
this point. Thus we know exactly which regions D(p,  R),  
p E R can possibly be incident with a Voronoi vertex on e .  
The same argument applies to edges of V(R) .  

By scanning the border of outer regions of V(L) and 
V(R)for these Voronoi vertices, we obtain starting points 
for tracing the bisecting edges. Note however that these may 
not be all new Voronoi vertices: We scan outer edges only 
for starting points, but bisecting edges may start or end on 
edges of inner regions. However these belong to a bisecting 
chain starting and ending at points on edges of outer regions 
or on the boundary of the parameter domain. 

The remaining problems we have to solve is how to trim 
edges of V ( L )  and V ( R )  at those new Voronoi vertices, 
and how to continue tracing in case this edge does not be- 
long to an outer region. This problem however is well re- 
searched, see e.g. [6] for the Euclidean case and [4] for ab- 

stract Voronoi diagrams. All in all, we get this algorithm for 
merging the sub-diagrams V ( L )  and V ( R ) :  
Voronoi diagram mergesubdiagrams (V(L) ,  V ( R )  : 
Voronoi diagrams) { 

P : Set of starting points of bisecting edges; 
V ( P )  : Voronoi diagram; 
e : Voronoi edge; 
U : Voronoi vertex; 
i : integer; 
P = { starting points on borders of outer regions of 
V ( R ) }  U { starting points on borders of outer regions of 
V ( L ) } ;  
V ( P )  = V ( L )  U V ( R ) ;  
i = 0; 
while (i < [PI) { 

i = i + l ;  
for (every bisecting edge e starting at P; and not 
marked as done)i { 

trace e to its endpoint U; 
trim edges of V ( L )  respective V ( R )  at Pi; 
mark e as done at Pi; 
while (U @ P )  { 

add e to V ( P ) ;  
trim edges of V(L) respective V ( R )  at U; 
determine new edge e at U; 
trace e to its endpoint U,; 
v = U,; 

1 
trim edges of V ( L )  respective V ( R )  at U; 
add e to V ( P )  ; 
mark e as done at U; 

1 
1 

1 
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Figure 3. Voronoi diagram on a wave-like surface and corresponding curves in parameter space 

Figure 4. Voronoi diagram on a paraboloid and corresponding curves in parameter space 

4. Results 

With aid of the tools developed in section 3,  we are 
able to compute Voronoi diagrams on parameterized sur- 
faces. As of now, we have implemented the algorithm de- 
scribed above in C++. It can be shown that we indeed com- 
pute correct geodesic Voronoi diagrams due to the fact that 
geodesics emanating from the center p of a Voronoi region 
D(p,  P )  stay distance minimal until they reach the border 
of D(p ,  P )  provided they do not contain conjugate points 
of p,  i.e. points where &O, vanishes, and the border of 
D(p,  P )  has no self-intersections (c.f. [8] for background 
on distance minimal geodesics). In computing the Voronoi 
edges, we check that both of these conditions are fulfilled. 

First numerical experiments have shown our algorithm to 
be numerically stable and to trace Voronoi edges with quite 
high accuracy. By solving the differential equations 13 it 
appears to be possible to determine points on the Voronoi 
edge with a position accuracy of provided all calcu- 
lations are done in double precision. 

Some small examples of geodesic Voronoi diagrams are 
shown here: Figure 3 shows a geodesic Voronoi diagram on 
a wave-like surface given by r(u, w) = ( U ,  U, sin U cos w) 
and the corresponding curves in parameter space, figure 4 
shows a geodesic Voronoi diagram on a paraboloid parame- 
terized by r(u, w) = ( U ,  v, u2 + w2)  along with correspond- 
ing curves in parameter space. 

These two examples indicate another result shown more 
clearly in figure 5: Even if these geodesic Voronoi diagrams 
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Figure 5. Geodesic Voronoi diagram of five points on a wave-like surface and Euclidean Voronoi 
diagram of the same set of points 

t n L 
Voronoi point 

- - Voronoi edge 

Figure 6. Sketch of a Voronoi diagram with three points and two “islands” 

are topologically the same as Euclidean Voronoi diagrams 
of the same set of points, they are analytically quite differ- 
ent. Figure 6 shows that geodesic Voronoi diagrams may 
not even be topologically equivalent to Euclidean Voronoi 
diagrams of the same set of points. 

In section 2.2, we required that each Voronoi edge start 
at either a Voronoi vertex or the boundary of the parameter 
space of S. This assumption holds for surface patches S 
which are “reasonably similar” to a plane, but as sketched 
in figure 6 there are quite a few surfaces where this assump- 
tion does not hold. We are working on a method to lift this 
restraint, allowing us to calculate Voronoi diagrams where 
one region “floods” part of the diagram, creating “island re- 
gions”. 
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