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Surface Curve Design by Orthogonal 
Projection of Space Curves Onto Free-
Form Surfaces 
A novel technique for designing curves on surfaces is presented. The design specifications 
for this technique derive from other works on curvature continuous surface fairing. Briefly 
stated, the technique must provide a computationally efficient method for the design of sur­
face curves that is applicable to a very general class of surface formulations. It must also 
provide means to define a smooth natural map relating two or more surface curves. 

The resulting technique is formulated as a geometric construction that maps a space 
curve onto a surface curve. It is designed to be coordinate independent and provides isopara­
metric maps for multiple surface curves. Generality of the formulation is attained by solving a 
tensorial differential equation formulated in terms of local differential properties of the sur­
faces. For an implicit surface, the differential equation is solved in three-space. For a para­
metric surface the tensorial differential equation is solved in the parametric space associated 
with the surface representation. 

This technique has been tested on a broad class of examples including polynomials, 
splines, transcendental parametric and implicit surface representations. 

1 Introduction 

In many applications related to the design, cutting, patching and 
welding of free-form shell structures, such as in naval and aeronau­
tical architecture or car body design, surfaces have to be cut along 
pre-defined trimming lines before assembly. Such a trimming line 
is usually defined in parametric space for parametric surfaces and 
in three space for implicit surfaces. 

This paper introduces a novel method for designing curves on 
surfaces by mapping a space curve onto a surface curve. This 
method relies on a novel geometric construction introduced in this 
paper under the name of orthogonal projection of a curve onto a 
surface. This geometric construction presents many advantages 
for the purpose of matching adjacent trimmed patches and map­
ping non-adjacent trimmed patch boundaries for fairing. It offers a 
uniform design tool that works independently of the surface for­
mulation because it results from a geometric construction rather 
than a parametric definition. It allows the engineer to design inter­
actively one or more trimming curves on multiple surfaces directly 
in three-space. Most importantly however, the geometric construc­
tion provides a natural smooth map between the space curve and 
the surface curve or between multiple surface curves. In tested 
examples, this map has been used to design trimming curves on 
different surfaces in a natural, i.e. geometric, manner. This map 
was used in turn to generate blend surface patches that connect 
with initial surfaces along the trimming curve. 

The main objective of this paper is to introduce the orthogo-
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nal projection onto curved surfaces as it relates to design of 
blended trimmed patches. Our focus is on supplying computa­
tional methods for the orthogonal projection rather than discussing 
its mathematical properties. 

This paper is organised in three main parts. Section 2 reviews 
related works that pertain either to the design of trimming curves 
on surfaces or to the geometric construction introduced here. Sec­
tion 3 is devoted to introducing the orthogonal projection as an 
extension of the distance projection, which is already an important 
facility for analysis and interrogation in computer-aided design. 
Sections 4 and 5 introduce the computational formulation of the 
orthogonal projection onto curved surfaces respectively for para­
metric and implicit surfaces. Section 6 develops further the natural 
smooth map provided by the orthogonal projection and illustrates 
how this construction was applied to trimming and blending. 

2 Previous Works 

Previous works related to the material exposed here come from 
two different sources. One is related to the design and representa­
tion of curves on surfaces. The other is related to previous works 
in geometric modeling that pertains to the orthogonal projection 
introduced here. 

In the majority of previous works that we surveyed, trimmed 
patches occur in the context of surface-surface intersection, see for 
example the work of Casale [2], in which trimming curves are 
approximated by broken lines in the parametric domain or 
Patrikalakis et al. [3], in which the trimming line is interpolated by 
B-splines. 

Explicit design of curves on surfaces has been addressed spo-
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radically in the computer aided design community. Bezier [4] 
designed curves in the parametric domain of a patch. Such a 
design of a parametric curve in the parametric domain yields a 
high degree space curve, which was then approximated by a lower 
degree curve (See Wolter et al. [19].) Hansmann [5] also designed 
a trimming curve as a B-spline in the parametric domain for the 
purpose of blending. Barnhill and Ou [6] are pursuing the design 
of curves and surfaces on surfaces for the purpose of visualization. 
Commercial CAD packages such as Unigraphics, PATRAN and 
General Motor's Corporate Graphics System also provide means 
for designing surface curves but their implementation is not docu­
mented. 

Distance projection and orthogonal projection of a point onto 
a surface are presented in detail in Section 3. Both projections 
map a space point into one or more surface points. However, the 
former is characterized by a minimum distance criterion, while the 
latter requires that the projection line be normal to the surface. 

To our knowledge, the notion of orthogonal projection in 
computer aided design appears only in [7], [8] and [9] in the con­
text of variable radius blending. Even though the orthogonal pro­
jection onto a curved surface was effectively used in these works, it 
was not recognized as a geometric construction in its own right and 
was developed exclusively on the basis of the distance projection. 
Some developments of the orthogonal projection as well as appli­
cation to trimming and blending are covered in [10] and [11]. 

The distance projection problem consists in finding the clos­
est points on a surface to a given point in space. Such a problem 
occurs frequently in computer aided design and manufacturing. 
Chen and Ravani [12] for example used the distance projection to 
map an NC tool path on an offset to the initial surface. Rossignac 
[13] studied some properties of the distance projection in the con­
text of constructive solid geometry. Finally, Wolter [14] investi­
gated the distance projection in the general context of Riemanian 
geometry. 

3 Distance Projection Versus Orthogonal 
Projection 

Orthogonal projection is related to the known notions of distance 
projection of a point onto a set and distance between a point p 
and a set S that are investigated extensively by Wolter [14] in the 
general context of Riemanian manifolds and Rossignac [13] in the 
context of Constructive Solid Geometry. They are recalled here for 
the purpose of clarity. 

3.1 Distance projection of a point onto a set. By definition, 
the distance d(p,S)froin a point pto a non-empty set S is defined 

p 
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, The distance projection of p onto S 
K is indicated by a dark shaded point • 
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FlCj. 1 Two-dimensional examples of projection of a point onto a set: 
(a) The projection contains only one point, (b) The projection contains more 
than one discrete point, (c) The projection may contain an infinite number of 
points. 

as the infimum of the distance ^(p,C|) between p and any point q of 
S. 

V p e 5R ,rf(p,S) = inf d(p,S) 
q e S 

(1) 

The distance projection of a point p onto a non-empty set S 
is then defined [14] as the set P(p,S) of points q of c/(S) such that 
rf(p,q)=rf(p,S). 

P(p, S) = {q e 9?\- q e c/(S)and d{p, q)} = d(p, S) (2) 

As illustrated by Figure 1, P(p,S) may contain a single point, 
a finite or infinite number of discrete points or an infinite set of 
points. 

3.2 Ortliogonal projection of a point onto a surface. We 
shall now define the orthogonal projection of a point p onto a sur­
face S defined parametrically by a map q(«',M^) with values in 
three-space. We assume that the Jacobian of the parametrization is 
full-rank everywhere. This is equivalent to requiring that the two 
partial derivatives 9 ^ / 3 M and 3 ^ / 9 M are linearly independent 
everywhere. We shall refer to such a surface as being regular. In 
this case the cross-product of the partial derivatives is defined 
everywhere and yields the surface normal. We also require that 
the surface be second order continuous. This means that the sec­
ond order partial derivatives of qCw^w )̂ are defined and continuous 
everywhere. 

Definition 1: The orthogonal projection of a point p onto Sis 
the set P (p,S) of points q o/ S such that the vector pq is nor-

Nomenclature 

g = 
c = 
\ 
9t = 

? = 
n = 
pq = 
ll̂ ll = 
u • v = 
n\ -

set membership. 
set inclusion. 
set difference. 
set of real numbers. 
point. 
vector. 

The vector q-p. 

norm of the vector 

inner product of two vectors. 
First order continuity. (The first order 
partial derivatives exist and are contin­
uous). 

I 

v/ 
as : 
cl(S) 

Second order continuity. (The second 
order partial derivatives exist and are 
continuous). 
The natural derivatives on a surface S 
Kronecker symbol. 
Components of the first fundamental 
tensor on a surface S . 
Components of the second fundamen­
tal tensor on a surface S . 
The gradient of/ 
Boundary of S. 
Closure of the set S. 

• = end of proof 
inf fg\ = Infimum of the function / (q) 
qE S I set S. 

We shall use Einstein's implicit summation 
convention. Summation applies to identical indi­
ces in the same prefix or suffix and in different 
subscript or superscript position. When applica­
ble, superscript indices on a scalar corresponds 
to contravariant components, subscript to covari-
ant components. This convention is described in 
detail in [1] 
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p • 

I'he distance projecUQn 
of p onto Sis indicated by 
a dark shaded point • r 

Fig . 2 The orthogonal projection of a point onto a reguiar surface S 
may be empty (a), contain many isoiated points (b), or an infinite number of 
points (o), whicli are not necessariiy distance projections of the point. 

mal to the surface S at point q . 

P^(p ,S) = | q e S : p q . A q = 0 ; l < 7 < 2 
I du' 

(3) 

Definition 1 distinguishes the notions of distance projection 
and orthogonal projection. Whereas the distance projection P(p,S) 
was shown to be nonempty for a closed point set S in [14], the 
orthogonal projection P (p,S) may be empty as illustrated by Fig­
ure 2. This can be rephrased as follows; if S is a closed set then 
for any given space point p there always exists a nearest point on S 
guaranteeing the distance projection of p onto S to be non-empty. 
However, if S is a surface patch with boundary it is not guaranteed 
that there exists any point q of S that can be joined to p along a 
surface normal at q, see for example Figure 2, case (a). Finally, it 
is possible for both the orthogonal and the distance projection to 
contain more than one point. It may contain a major part or even 
the whole surface, for example take the projection of the center of 
a sphere onto the sphere itself. These possibilities are illustrated in 
Figure 2, cases (b) and (c). 

Although the orthogonal projection was not addressed as an 
entity per se in their works, Wolter [14] and Rossignac [13] proved 
that, if the surface S admits a first-order continuous local parame­
terization at a point qe P(p,S), then the distance projection q of p 
onto S is an orthogonal projection of p onto S\3S. To be more pre­
cise, the distance projection P(p,S) is a subset of the orthogonal 
projection P"'"(p,S). The proof uses the fact that here, the projec­
tion q corresponds to a local extremum of the Euclidean distance 
rf(p,m), meSatq. 

Theorem 1: If S admits a C parametrization and the distance 
projection P(p,S) is included in the interior ofS, then P(p,S) is 
included in P"''(p,S). 

P(p,S)eP^p,S) (4) 

Proof: 
qe P(p,S) => rf(p,q) is minimum 

—>2 
=> pq is minimum 

Fig . 3 The distance projection of a point p onto a parabola contains 
one point q when p is not on the dotted central axis of the parabola. However, 
when crossing the central axis, the location of the distance projection jumps 
from one parabola branch to the other. When p is on the central axis, the dis­
tance projection contains two points q^ and q2. This example shows that 
the distance projection q of a family of points p cannot be traced continuously 
on the parabola. Note that the dotted central axis of the parabola is the cut 
locus of the parabola. The cut locus concept has been investigated by Wolter 
[14]and[20L 

pq is normal to S at point q. 

F ig . 4 The orthogonal projection of a point p onto a parabola is multi­
valued. It contains points on both branches of the parabola. However, the 
family of footpoints on each branch can be traced continuously even when the 
projected point q crosses the dotted central axis of the parabola. 

=>qEP^(p,S) • 

The converse of Theorem 1 is not true because: 
1. Any local extrema of the distance rf(p,m), ms S, mg dS, on a 
differentiable surface is an orthogonal projection while d(p,m) is 
not necessarily an infimum. 
2. The point me S on a differentiable surface may be an orthog­
onal projection while d(p,m) is not even a local extremum (eg. 
saddle point on the surface). 

However, Theorem 1 is a useful property for finding at least 
one point in the orthogonal projection of p if the nearest footpoint 
on S is not on 3S. 

3.3 Continuity of the orthogonal projection. Wolter [14] as 
well as Rossignac[13] proved that the distance rf(p,S) is a continu­
ous function of p everywhere. However the distance projection 
P(p,S) is not a continuous function of p everywhere as can be 
shown with the simple example illustrated by Figure 3. The points 
in the distance projection are the optimal solutions of a non-convex 
quadratic optimization problem and are subject to discontinuous 
changes. Also, the distance projection may change from a single 
point to an infinite set as illustrated by Figure 1, case (c). 

In contrast, the orthogonal projection onto a surface allows to 
trace footpoints continuously in situation where that continuous 
tracing is not possible with the distance projection. This is illus­
trated by the example in Figure 4. 

3.4 Orthogonal projective tensor. The orthogonal projective 
tensor, which is introduced in this section, plays a central role in 
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the rest of this paper. Although it may seem somewhat unrelated to 
the previous material, its early introduction will simplify the rest of 
this presentation. 

Definition 2: Let p be a space point, S be a C continuous 
regular surface and let q be a point of S. The tensor with compo­
nents Kji( defined below is said to be an orthogonal projective ten­
sor of S at pifqeFHp,S) 

da da -± da 
K., = —-1 •—-=• + D O • -'— 

J'' duJ dui" *^^ duJdu'' 
(5) 

Theorem 2: Let S be a C continuous regular surface. Let 
p = pq • n where n is the outward unit normal to the surface S 
at point q. Let gjj and bj: denote respectively the components of 
the first and second fundamental tensors, then the orthogonal pro­
jective tensor is related to the first and second fundamental tensors 
by the following equation: 

'J 

Recall that g,- = ^ 

8ii + 9b. (6) 

Proof: 
fundamental tensor we ha' 

therefore, by definition of the first 

3q 8q 

Since pq is normal to the surface at q, pq = 
definition of the second fundamental tensor, we have: 

P^, 

pq 
3 q ^ 

' —T~. = pn > 
du'ouJ 

(7) 

and by 

(8) 

Corollary 2.1: Let S be a C continuous regular surface. An 
orthogonal projective tensor of S in p is singular —i.e. the matrix 
Kjj is singular— if and only if p is one of the principal centers of 
curvature of the surface in q. 
Proof: Using equation (6), corollary 2.1 derives from a classical 
result of tensorial analysis (see for example [1]) • 

Figure 4 the sequence of projection points on a parabolic arc. 
In the remainder of this section, it is assumed that F is a 

curve parametrized in t. Consider a point p(0 of F, and an 
orthogonal projection point q(0 on the surface S, i.e. 
q(f)e P"'"(p,S). The motion of the orthogonal projection q(0 as 
p(;) moves on F is a continuous function of p(0. This continuity 
statement will be justified a posteriori by solving the differential 
equation associated with the orthogonal projection. 

Let \ gj- [ denote the local covariant basis [1] on the surface in 
curvilinear coordinates {«'} and let the point q be in the orthogo­
nal projection set of the point pe F onto the surface S. The prop­
erty of orthogonality translates into a system of 2 equations: 

—> -^ 
p q • g, 0 . (10) 

Then taking the derivative of equation (10) with respect to t yields: 

da -^ -^ 
^ • g , + p q -

4 
dt 

dp -> 
dt ^' (11) 

The chain rule is used to express d(\/dt and dg/dt in terms 
of the natural coordinates. 

4 3q duJ 
dt duJ dt ^i dt 

4i 
dt 

^duJ_ 
duJ dt 

(12) 

(13) 

Substituting (12) and (13) into equation (11), we find that the 
projection of the first derivatives of p{i) onto the tangent plane of S 
at point q is linearly related to the first derivatives of q(/). 

g; • g ; + pq • ; 
' ^ dul 

dul 
dt 

4, 
dt 

(14) 

Recognizing the orthogonal projective tensor from equation 
(6) in equation (14), the linear relation becomes: 

du-i 

"^iilt 
dp -^ 
dt ^• 

(15) 

4 Orthogonal Projection of a Space Curve 
Onto a Parametric Surface 

In this section and the next one, we shall develop the notion of 
orthogonal projection of a space curve onto a surface. As our 
focus is on supplying computational methods for the orthogonal 
projection, the discussions of the mathematical conditions for 
existence, continuity and differentiability of the orthogonal projec­
tion curve are not exposed in details here . Suffice to say that these 
conditions are met provided that the space curve remains close 
enough to the surface and the projected curve remains in the inte­
rior of the surface patch. 

Definition 3: Given a space curve F and a regular C continu­
ous surface S, we define the orthogonal projection of F onto S 
as the set P (r,S) of points of S that are orthogonal projections 
of at least one point of F. 

. P"^(G, S) = {q 6 S : 3p e G such that q e P" (̂p, S)} (9) 

4.1 Differential equation of tlie Ortliogonal Projection: As 
we mentioned above in Section 3, the orthogonal projection of a 
point may be multivalued. For a curve, the orthogonal projection 
may result in a set of different projection curves on the surface. 
We are interested in tracing one such curve. See for example in 

Let KJ' be the covariant coordinates of the orthogonal projec­
tive tensor [1], i.e. the matrices with components KJJ and K '̂ are 
inverse of each other. Then, if the orthogonal projective tensor is 
non-singular, the system of equations (15) with unknown duJ/dt 
can be solved by: 

du-i ijdp ^ / 1 /TN 
— = K^'-r- ' g ; (16) dt dt 

Written in expanded form, the system of equations (16) 
becomes: 

^t ^ dt *' -̂  dt ^ " dt 
i= 1 

(17) 

For the sake of improved readability, a matrix formulation of 
equation (17) is also provided below. Letting K be the matrix with 
coefficients Ky, we have: 

du 
dt 

du^ 
dt 

= K 
4. 
dt 

4, 
dt 

- > 
' g l 

- > 
'g2 

(18) 

4.2 Computation of tlie orthogonal projection. Given equa-
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tion (16) derived above, the orthogonal projection curve is 

obtained by solving an initial value problem. One possibility to 

find an initial point for this problem could use the distance projec­

tion of an inital point p on the space curve F . Here one may also 

be satified with a point rrioe S being a local minimum for the dis­

tance function d(p,mg}, thereby being an orthogonal projection 

according to Theorem 1. That local minimum can be obtained by a 

sampling method combined with a modified Newton-Raphson 

search. 

Once an initial value is selected a marching method (second 

order Runge-Kutta or Adams-Bashforth with adaptive accuracy 

control [15]) is used to solve the initial value problem related to the 

first order system of differential equations (16). 

In practically tested situations, the initial value for equation 

(16) was chosen to be an interior footpoint on the surface patch S. 

The solution curve is traced until it hits the patch boundary, which 

is the only part of the projected curve needed for trimming. 

It is possible to refine the accuracy with a post-Newton itera­

tion method. The preceding computation yields an array of points. 

Using for example a cubic B-spline interpolation for those points 

yields a closed form B-spline approximation of the orthogonal pro­

jection curve. The particular approximation method employed was 

developed by Wolter et al.[19] for the approximation of general 

univariate functions covering the solution of an initial value prob­

lem as a special instance. This approximation can be made 

extremely accurate, that is better than single precision for most 

practical purposes. In the tested examples we could always 

achieve accuracies of 10"^ on the interpolation curve if the orthog­

onal projection were computed with 10"'^ accuracy, which was 

always possible. The above mentioned Newton refinement is how­

ever rarely necessary because Adams-Bashforth integration yields 

very accurate results when computations are done in double preci­

sion. 

5 Orthogonal Projection of a Space Curve 
Onto an Implicit Surface 

In this section we shall develop an equivalent formulation to equa­

tion (16) when the surface S is represented by an implicit equation. 

Precisely, we consider a C^-continuous surface S defined in three-

space by 

S = {(xK jc2, x3) e 5R3 . f(^xK x^, JC3)=0} (19) 

where/is a C^-contijujous real-valued function. We shall assume 

further the gradient V / does not vanish at any footpoint at which 

we trace the orthogonal projection. Under this assumption the 

surface unit normal vector at a point QG S is given by 

'(q) 
V/(q) 

llv/(q)|| 
(20) 

As in Section 4, we consider the current point p (0 of a space 

curve r and we trace a footpoint q (0 with coordinates 

(x l s , x ? s ,xl-. ) on the surface S. Letting p(f) be the oriented 

distance between p(0 and q ( 0 measured along the normal vector, 

we have the following relation defining p(0. 

pq = q ( o - P ( 0 = -P(')'Kq(f)) (21) 

A relation between the derivatives of pit) and q(0 is obtained 

by differentiating the previous equation (21) with respect to the 

curve parameter t. 

(22) 

Note that since n is a unit vector normal to the tangent plane, 

the vector dn/dxi is necessarily in the tangent plane because 

3 n / 9 x ^ » n = 0 as can be seen by differentiating n^ = 1 . 

Rearranging equation (22) and expanding dn/^x^ yields 

^'{t)-^\t)k%)) = ^\t) 

+ P(0 v/(q) 

(23) 

dx^ 
•V/(q) + av/(q) 

I|v7(q)|| dx^ 

dxJ_ 

dt 

Projecting both sides of equation (23) onto the tangent plane to S 

^ ^ 
at point q(?) simpUfies the equation because n (q( f ) ) and V / ( q ) 
are vectors normal to the tangent plane. 

' ( 0 - ^ ' " ( 0 (PVn»n)n = q' 
(0 

P(0 

I|v7(q)|| 
9V/(q) 

dxJ 
av/(q),g 

dxJ 

dxl 

dt 

(24) 

Note that we have subtracted the normal components of those vec­

tors that are not contained in the tangent plane. 

Recall that the coordinates of q'(f) are dxJ/dt. Hence, letting 

B be the matrix with column vectors 

By = 
1 

|v/(q)|| vv 

9V/(q),g 
dxJ 

^ 3V/(q) 

dxJ 
(25) 

and using the identity matrix I, the right hand side of equation (24) 

can be reformulated as follows: 

P ' ( r ) - ( P ' ( f ) * " ^ " = [ I - p ( O B ] q ' ( , ) . (26) 

Note that the linear map represented by matrix B is self-

adjoint. Letting n be the coordinates of the normal vector n , the 

components of B are: 

•x2 . . . . -,2 , 

^ ' = 
1 

iV/(q) | 

(lA£l,nk„i_lML], (27) 
dx'dxJJ ' 

which can be re-written in a more concise form by introducing the 

Kronecker symbol 5 : 

•' | |^y^Jvax*3x^' 3x*3xJ 

and factoring out the second derivatives: 

si 

^• L_ii^(„v_5"). 
tsUx'^dxi 

(28) 

(29) 

l|V/(q)|| 
Also note that the matrix B has rank 2 because all its column vec­

tors are in the tangent plane. Because of this and the self-adjoint-

ness, it has at most two non-trivial real eigenvalues l / p j and 

l /p2 . It will not be proved here that these eigenvalues are the 

principal curvatures of the surface at point q. 

The tensor 

K = I Pit) B (30) 
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is the formulation of the orthogonal projective tensor in the 
implicit case. Using this notation equation (26) becomes: 

Assuming that the matrix K is non-singular, the projected curve is 

determined by solving the system of differential equations 

q{t) = K " ' ( P ' ( , ) - ( P ' ( f ) « n ) ^ ) . (32) 

The non-singularity of the matrix K is guaranteed provided that p 
is not a center of curvature of the surface S at point q. Hence 
again as in the parametric case, the differential equation is well 
defined if the projected curve does not pass through curvature cen­
ters of the surface. 

5.1 Computation of the orthogonal projection. Computa­
tion of the orthogonal projection of a parametric curve onto an 
implicitly defined surface is very similar to its parametric counter­
part. The projection curve is obtained by solving the initial value 
problem defined by equation (32) and an initial point obtained as 
in Section 4. Like in the parametric case a highly accurate B-
Spline approximation curve of the orthogonal projection curve can 
be obtained using the general method described by Wolter et al 
[19] 

The main difference between computations in sections 4 and 
5 is that the differential equation is solved in 2-space for paramet­
ric surfaces and in 3-space for implicit surfaces. The implicit sur­
face case requires resolution of a linear system of three equations 
in three unknowns at each step versus the resolution of a linear sys­
tem of two equations in two unknowns in the parametric surface 
case. At this point, it is worthwhile mentioning that we give equa­
tions (16) and (32) because we want to formulate an explicit first 
order system of ordinary differential equations. In both the 
implicit and the parametric case however, the solution to equations 
(16) and (32) may be computed without computing the inverse of 
the orthogonal projective tensor. Numerical solutions that do not 
require inversion of the orthogonal projective tensor are especially 
valuable in the implicit case. Since equation (32) is a system of 
three equations in three unknowns, it requires more work to invert 
the matrix K than to invert the two by two matrix K in the para­
metric case. 

6 Application to Trimming and Blending 

The approach offered by orthogonal projection onto curved sur­
faces presents many advantages for the design of trimmed patches. 
Orthogonal projection is a purely geometric construction. There­
fore it is both coordinate and representation independent. But the 
most important contribution of this design tool is that it provides a 
natural smooth map between a space curve and a surface curve. 
This map has been used effectively to map multiple surface curves, 
as in Figure 5 for example. These surface curves are used for trim­
ming original patches while the map provides a natural correspon­
dence between non-adjacent boundaries of trimmed patches. This 
correspondance between different trimming curves being orthogo­
nal projection curves is obtained because the projection curves 
inherit their parametrization from the projected space curve which 
may be the same one used for the projection onto different surface 
patches (see Figure 5.) 

Trimmed patches appear primarily in the context of surface 
intersections, see for example [2]. The orthogonal projection 
offers a design tool that allows definition of a trimming curve inde­
pendently of surfaces intersection but still retains a map between 
two different surface curves. This property can be used advanta-

Fig. 5 A space curve T is mapped into two surface curves T^ and 
F j respectiveiy on surfaces S, and S2. The orthogonai projection maps a 
point q(Q of tlie space curve into its images p^{t) and P2(?) respectively on 
S-i and S2. This map can be used in turn to map Pi(f l into Pzit). 

geously to extend the realm of trimmed patches into surface blend­
ing, as we shall now demonstrate. 

Assume that we are given a space curve T and two surface 
patches Sj and S2 with respective parametrizations Pi(«',v') and 
P2(M^,V^). A point q(0 on the curve F can be mapped into two 
points P , ( 0 = P I ( M ' ( 0 . V ' ( 0 ) and P2(0= P2("^(0.v^(0) respectively 
on Sj and S2 (Figure 5). Actually, when a surface S is defined 
parametrically by P(M,V) the orthogonal projection maps the point 
q(0 directly into the pre-image (u(t),v(t)) of the orthogonal projec­
tion point p(0 in parametric space. In both the implicit and the 
parametric cases, we have the following: If the point C\(t) does not 
pass through any curvature center of the two surfaces then the sur­
face curves Fj and F2 respectively traced by Pi(f) and P2(0 on Sj 
and S2 are CI-smooth if the patches are C^-smooth and the param­
etrization q(0 of the curve F is C'-smooth. The correspondence 
between the two simultaneously traced projection curves Pi(t) and 
P2(0 can be described by a smooth map m mapping the surface 
curve Fj into the surface curve F2, and m is defined by : 

m(pi(0) = P2« . (33) 

When the space curve crosses the locus of centers of curva­
tures of the surface, the orthogonal projective tensor becomes sin­
gular. In our experiences, this singularity is detected by a change 
of sign of the determinant of the orthogonal projective tensor. 
When a singularity is detected, matrix conditioning is applied and 
the map is extended across the singular projection by tangent con­
tinuity [15]. 

In the example treated in Figures 6, 7 and 8 we shall demon­
strate an implementation of orthogonal projection as it relates to 
the problem of curvature continuous blending. Given two primi­
tive surface patches, the designer inputs a space curve, which is 
then projected onto both surfaces Figure 6. The orthogonal projec­
tion map is also used to define geometrically tangent directions on 
the surfaces along which the local surface curvatures are com­
puted. Indeed the differential of the orthogonal projection (i.e. the 
orthogonal projective tensor) onto a surface, say Si, maps any vec­
tor at point q(t) into a vector in the tangent plane to the surface Sj 
at the footpoint Pi(0- In order^to define a natural map, we chose to 
project onto Sj the vector qpj joining q(f) to its projection P2(0 
onto the surface S2. The choice of this construction is justified by 
computational considerations and because it also applies at the 
boundary. The normal curvature of the surface^Sj at the footpoint 
Pl(0 in the direction of the projection of q p j are then used to 
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Fig . 6 Given two primitive surfaces the designer Inputs a space 
curve, which is used as a design parameter to trim the surface patches, define 
a map between the two trimming curves and define a parameterization of the 
biending surface. 

define a sweeping curve whose envelope generates a curvature 
continuous blending surface (Figure 7.) Curvature continuity 
across the blend is guaranteed by the Linkage Curve Theorem 
established in [16], In essence this theorem states a necessary and 
sufficient condition for curvature continuity across two surface 
patches that are normal continuous and connect along a common 
boundary curve called the Linkage Curve. For two such surface 
patches to be linked curvature continuously it is sufficient that their 
normal curvatures agree at all points of the linkage curve along at 
least one direction, as long as this direction is not tangent to the 
linkage curve. Finally, trimming is applied on the primitive sur­
faces yielding a new boundary that is common to the blend and the 
trimmed primitive surface patches Figure 8. For a more detailed 
description of the blending work and the treatment of orthogonal 
projection at the boundary the reader is referred to [17] and [18]. 

7 Conclusion 

This paper reports a new approach to the problem of design­
ing curves on surfaces. The design solution proposed here uses an 
original geometric construction, the orthogonal projection of a 
curve onto a free form surface, which is used to map a space curve 
into a surface curve. This geometric construction can be formu­
lated in terms of a differential equation, which is solved numeri­
cally. The orthogonal projection mapping was tested on a wide 
variety of surfaces defined implicitly or parametrically. Its practi­
cality was demonstrated in the context of trimmed patches and cur­
vature continuous surface blending. 

8 Acknowledgments 

The work reported in this paper was supported in part by the 
Office of Naval Research under grant N00014-89-J-1846 (J., 
Pegna), and by the Army Research Office grant DAAL03-88-
K0186(F-E.Wolter). 

Figures 6, 7 and 8 were generated on a Silicon Graphics™ 
workstation by R.N. Raj and J. Pegna using the visualization soft­
ware WINGS(©) written by A. Safi and J. Pegna. For the class of 
B-Spline curves and surfaces described in Section 4, the computa­
tion of the orthogonal projection curve (including its approxima­
tion employing [19]) has been implemented in the geometric 

Fig. 7 The biend surface prior to trimming 

Fig. 8 The resulting surface patch after trimming. 

modeling system Praxiteles developed at the MIT Design Labora­
tory. 
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