
Vis Comput
DOI 10.1007/s00371-014-1041-3

ORIGINAL ARTICLE

Geodesic bifurcation on smooth surfaces

Hannes Thielhelm · Alexander Vais ·
Franz-Erich Wolter

© Springer-Verlag Berlin Heidelberg 2014

Abstract Within Riemannian geometry the geodesic expo-
nential map is an essential tool for various distance-related
investigations and computations. Several natural questions
can be formulated in terms of its preimages, usually leading
to quite challenging non-linear problems. In this context we
recently proposed an approach for computing multiple geo-
desics connecting two arbitrary points on two-dimensional
surfaces in situations where an ambiguity of these connecting
geodesics is indicated by the presence of focal curves. The
essence of the approach consists in exploiting the structure
of the associated focal curve and using a suitable curve for
a homotopy algorithm to collect the geodesic connections.
In this follow-up discussion we extend those constructions
to overcome a significant limitation inherent in the previ-
ous method, i.e. the necessity to construct homotopy curves
artificially. We show that considering homotopy curves meet-
ing a focal curve tangentially leads to a singularity that we
investigate thoroughly. Solving this so-called geodesic bifur-
cation analytically and dealing with it numerically provides
not only theoretical insights, but also allows geodesics to be
used as homotopy curves. This yields a stable computational
tool in the context of computing distances. This is applica-
ble in common situations where there is a curvature induced
non-injectivity of the exponential map. In particular we illus-
trate how applying geodesic bifurcation approaches the dis-
tance problem on compact manifolds with a single closed
focal curve. Furthermore, the presented investigations pro-
vide natural initial values for computing cut loci using the
medial differential equation which directly leads to a discus-
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sion on avoiding redundant computations by combining the
presented concepts to determine branching points.
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1 Introduction

Distance-related problems including notions such as Voronoi
diagrams or the cut locus are a central topic in computa-
tional geometry, where they are considered in Euclidean and
also in more abstract settings, see e.g. [4]. Common dis-
crete approaches dealing with non-Euclidean situations usu-
ally base or implicitly rely on a suitable approximation of the
distance function dM (p, ·) with respect to some point p on
the considered object M , see e.g. [14,33]. The latter is com-
monly embedded into Euclidean space and discretized ade-
quately. For example, combinatorial graph based techniques
such as the Dijkstra algorithm typically perform a sweep
over M emanating from p and extend every path which is
distance minimizing. Even more sophisticated discrete dis-
tance approximations such as fast marching methods [10]
basically iteratively extend a frontier of shortest paths and
compare distances to preserve the minimizing property. As
soon as a path ceases to be a globally shortest one, it is not
considered anymore within such approaches as it loses its
relevance for the discrete distance approximation.

The theory on Riemannian manifolds draws a much richer
picture, incorporating curvature information to analyze the
distance problem on M . Most notably it is well-known that
shortest paths have the property of being locally straightest
curves, known as geodesics, which are generalizations of the
straight lines in the Euclidean setting. In the Riemannian case
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Fig. 1 Generic situation

not every geodesic has to be a shortest path. However, the
reverse implication is true, therefore it is sufficient to search
for shortest paths within the set of all geodesics connecting
two given points p, q ∈ M . This is not possible within the
commonly used discrete frameworks, since they lack the con-
cept of a geodesic exponential map. Note that [25] introduces
an exponential map in polyhedral settings paving the way to
exploit the concept of geodesics within discrete settings.

The non-injectivity of the latter is captured in the cut locus.
More precisely the cut locus of a point p ∈ M is the clo-
sure of all points in M where a geodesic starting in p looses
its distance minimizing property. Its relevance for the dis-
tance problem arises from the fact, that any geodesic not
intersecting the cut locus is a shortest path. Consider Fig. 1
showing a surface patch and three geodesics connecting p
and q. While the cyan geodesic is the shortest path, since it
does not intersect the cut locus (light red), the blue geodesics
lose their distance-minimizing property at their intersection
points with the cut locus. We refer to such a set of connect-
ing geodesics between p and q as distance relevant, since it
contains the shortest path. Once such a set of geodesics is
available determining the distance is essentially trivial as it
amounts to choosing the shortest of them.

It is possible to obtain distance relevant sets of connecting
geodesics without the use of the global cut locus concept
relying on the local concept of focal curves. This approach
has been pursued in [34], which we follow in this paper.

In Fig. 1 the focal curve of p, also known as the conjugate
locus of p, is shown in dark red. Note that the cut locus
begins in the so-called cusp of the focal curve. This situation
is actually a generic representative of a curvature-induced
cut locus branch, thereby focal cusps are considered to be
natural starting points for tracing the cut locus.

Theoretical investigations for the cut locus can be found
for example in [22,28,36,37]. Computing cut loci and related
concepts such as the medial axis or Voronoi diagrams based

Fig. 2 Voronoi diagram and a medial axis. Proof of concepts in curved
3-space from [20,21]

on discrete respectively smooth surface representations has
received some attention in the literature, see e.g. [5,6,9,16],
respectively [30,31]. The two and three-dimensional smooth
Riemannian setting has been considered in [11,19,26] and
[38,39], the latter two being historical overviews on the
respective computational methods. A proof of concept for
the feasibility of computing three-dimensional Voronoi dia-
grams respectively medial axis inverse transformations in
this case has been described in [20,21], see Fig. 2 for exem-
plary results. However the corresponding two- and three-
dimensional algorithms have been restricted to domains in
which the exponential map is assumed to be injective, guar-
anteeing unique geodesic connections and thereby induc-
ing situations that are topologically similar to the familiar
Euclidean setting. For related theoretical investigations on
how these restrictions can be expressed in terms of curvature
dependent bounds see e.g. [13,15,23]. A survey on computa-
tional methods dealing with smooth surfaces can be found in
[24]. In order to overcome the significant assumption of geo-
desic injectivity we recently started a more detailed investi-
gation of the general two-dimensional Riemannian case [34].
We especially focus on a homotopy approach that general-
izes to higher dimensions without exponentially increasing
complexity. In order to illuminate the applicability of this
approach within higher-dimensional distance related prob-
lems we present two-dimensional examples which should be
understood as a proof of concept.

In this paper we extend upon the homotopy approach (HA)
presented in [34] for computing multiple connecting geo-
desics on curved smooth surfaces. The HA collects a set of
connecting geodesics between two arbitrary points p and q,
making use of local concepts such as Jacobi fields and focal
curves in a straight-forward manner as indicated by classical
theory. Note that aside from distance computations connect-
ing geodesics are of independent interest when considering
them within a variational context as stationary points of a
corresponding energy functional, see e.g. [1,12].
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The main subject of the HA is to exploit the generic sit-
uation shown in Fig. 1 where the Gaussian curvature of a
surface patch causes a family of geodesics radiating from
p to intersect among themselves. The resulting ambigu-
ity of connecting geodesics is indicated by the presence
of a focal curve. We refer to this situation as a locally
caused non-injectivity of the geodesic exponential map.
However, in general the ambiguity of connecting geodes-
ics can also be caused by the topology of M , which we
refer to as a global origin of non-injectivity. This is indi-
cated by the existence of geodesic loops not generating
focal points within M . A familiar example is the cylinder
that exhibits geodesic loops even though it is intrinsically
flat.

The HA is able to capture locally caused non-injectivi-
ties, indicating it to be a useful tool for distance compu-
tations on curved surfaces. However, a crucial part of the
method is to construct a suitable homotopy curve, which has
to intersect the focal curve transversally. In case the homo-
topy curve meets the focal curve tangentially the equations
within the HA exhibit a singularity, the so-called geodesic
bifurcation. This singularity excludes geodesics that gener-
ate a focal point as candidates for homotopy curves within
the HA.

In this paper we fill this gap by studying and describing
how to deal with the geodesic bifurcation. It turns out the
examined singularity can be resolved enabling us to use geo-
desics as canonical homotopy curves within the HA. Since
we base our approach on the ability to evaluate the geodesic
exponential map, geodesics are a priori easily constructed
homotopy curves in our context.

Additionally in a setting with closed focal curves our
present contribution allows to compute the distance of arbi-
trary points without requiring the explicit knowledge of the
cut locus or the focal curve. We exemplify how this solves
the corresponding global distance problem on ellipsoidal
shapes.

Our investigations of the geodesic bifurcation in focal
cusps allow us to explain the singularity of the medial dif-
ferential equation arising at the endpoints of the cut locus.
Based on that we present a solution on how to deal with
this singularity in practical applications. Within this dis-
cussion we explain the behaviour of medial curves in the
presence of focal curves and furthermore combine the pre-
sented concepts to yield natural starting points for a redun-
dancy minimizing approach to determine cut loci of dis-
crete point sets, also commonly known as Voronoi dia-
grams.

Our approach is applicable to parametrized or implicit sur-
faces that allow the evaluation of second order derivatives,
i.e. curvature information. This covers for example NURBS
patches or subdivision surfaces [32], as well as manifold
based constructions.

2 Basics

In this section we introduce some tools of Riemannian geom-
etry, necessarily omitting some technicalities and details due
to the lack of space. We follow the definitions and notations of
[34] and recommend [3] for a detailed exposition to classical
differential geometry that we build upon.

2.1 Riemannian manifolds

In this paper we assume M to be a two-dimensional complete
Riemannian manifold with metric tensor g = 〈·, ·〉. The latter
is used to define the length of curves and induces a classical
metric dM on M . In many applications M is assumed to be
a smooth surface embedded in Euclidean 3-space inheriting
the ambient metric. However, our approach is designed to
also cover the intrinsic setting which is naturally related to
energy minimization problems as indicated by Maupertuis’
principle, see [12].

The theorem of Hopf–Rinow assures the existence of
shortest paths, which are curves realizing the distance
between two arbitrary points p, q ∈ M . We denote the tan-
gent space of M in p by Tp M and the vector resulting from
a positive quarter turn of a tangent vector v ∈ Tp M by v⊥.
Since the following considerations take place within a local
context we do not distinguish between the objects on the
manifold and their representation within a particular chart
x : U ⊂ M → R

2. The latter map identifies points p ∈ M
with their coordinates (x1(p), x2(p)), simply denoted by
(p1, p2). In this paper assume p ∈ M to be arbitrary, but
fixed. Derivatives will be denoted as dotted quantities for
functions of a single variable. We will often use the short-
hand notation hu for the partial derivative ∂h

∂u .
In the next sections we will briefly discuss how to evaluate

the geodesic exponential map, followed by a short review of
concepts such as Jacobi fields, focal curves and the cut locus.

2.2 Geodesic polar coordinates (GPCs)

Geodesics on a Riemannian manifold can be understood
as generalizations of the straight lines in Euclidean space.
In order to investigate geodesics emanating from a given
point p one usually introduces the geodesic exponential map,
denoted by expp : Tp M → M , mapping s · v(ϕ) ∈ Tp M
to the endpoint of the geodesic γϕ starting in p in the direc-
tion v(ϕ) ∈ S1 ⊂ Tp M with length s. The computation of
the geodesic γ = γϕ : [0, s] → M is realized by solving
the geodesic differential equations ∇γ̇ γ̇ = 0, where ∇ is the
Levi–Civita connection on M . To evaluate expp in practice
one has to compute the coordinates of γ . This amounts to
solving

γ̈ k + �k
i j γ̇

i γ̇ j = 0
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starting in a chart covering p with the initial values γ l(0) =
pl , γ̇ l(0) = vl and performing chart transitions during the
integration if necessary. The �k

i j are the Christoffel symbols
of ∇ and given by

�k
i j = 1

2
gmk

(
∂gim

∂x j
+ ∂g jm

∂xi
− ∂gi j

∂xm

)
,

where (gi j ) is the representation of the metric tensor g with
respect to the frame induced by the current chart and (g jk)

denotes its inverse.
Since the geodesics we use are by definition arc-length

parametrized, the parameters (s, ϕ) introduced by the map
Op : (s, ϕ) 	→ γϕ(s) are said to be geodesic polar coordi-
nates (GPCs) with respect to p on M . Note that Op is not
injective in general for s ≥ rp, where rp is chosen minimally
and said to be the injectivity radius of M with respect to p. In
case rp is finite Op does not equip M with proper coordinates
in a unique manner. The theorem of Hopf–Rinow however
states that Op is surjective, so that for any point q in M there
exists at least some s0, ϕ0 with Op(s0, ϕ0) = q. The cor-
responding geodesic γϕ0 is called a connecting geodesic of
p = γ (0) and q = γ (s0).

The GPC concept allows us to define a geodesic circle
with center p ∈ M and radius s > 0 as being the set of
all points {Op(s, ϕ) : ϕ ∈ S1} which is a superset of the
distance circle {q ∈ M : dM (p, q) = s}.

We will now discuss the injectivity of Op incorporating the
classical concepts of focal curves respectively the cut locus.

2.3 Focal curves

To investigate the local injectivity of Op in terms of focal
curves we have to consider the vector field Jϕ0(s) =
∂
∂ϕ

Op(s, ϕ0) along the geodesic γ = γϕ0 for a fixed ϕ0.
From the Lemma of Gauss it is evident, that Jϕ0(s) ⊥ γ̇ϕ0(s)
and therefore Jϕ0(s) = y(s, ϕ0)γ̇

⊥
ϕ0
(s) respectively

∂

∂ϕ
Op(s, ϕ0) = y(s, ϕ)

∂

∂s
Op(s, ϕ0)

⊥ (1)

with a scalar function y(·) = y(·, ϕ0). It is a well-known
result that y satisfies the scalar Jacobi equation

ÿ(s)+ K (γ (s))y(s) = 0 ,

where K (γ (s)) is the Gaussian curvature of M in γ (s). In
practice the computation of y is realized by solving the above
differential equation simultaneously to the geodesic differ-
ential equation for γ . Initial values for the considered Jacobi
field are given by y(0) = 0 respectively ẏ(0) = 1. See [34]
for a derivation of the scalar Jacobi equation from its clas-
sical formulation. Roughly spoken the spreading of infini-
tesimally nearby geodesics in our two-dimensional setting is
encoded into y and is closely related to Gaussian curvature
as described by the Jacobi equation.

Fig. 3 Closed respectively unbounded focal curves

A point a = Op(s0, ϕ0) is said to be conjugate to p if
y(s0, ϕ0) = 0. In general geodesics can generate multiple
focal points while they extend, but since we use focal points
as an indicator for non-injectivity we will direct our attention
to the first ones. The set of all these points is called the (first)
conjugate locus. A generalization of the conjugate locus of p
incorporating the Fermi coordinates with respect to a curve
c on M instead of GPCs leads to the notion of focal curves
[3]. Since the HA generalizes to yield connecting geodesics
emanating orthogonally from c, we will use the name focal
curve instead of conjugate locus. Thus, we say that the geo-
desic γϕ0 generates the focal point a, and denote by f p the
set of all focal points with respect to p.

If Op(s0, ϕ0) is a focal point then Op is not injective in
any neighborhood of (s0, ϕ0) since the differential

DOp =
(
∂Op

∂s

∂Op

∂ϕ

)
=

(
γ̇ϕ0 yγ̇⊥

ϕ0

)

is singular as y(s0, ϕ0) vanishes [29]. In fact f p can be under-
stood as bordering a region of local non-injectivity of the
exponential map.

The success of finding all relevant geodesic connections
from p within the HA depends on the specific choice of
the homotopy curve and its interaction with f p. In order to
construct suitable homotopy curves it is useful to distinguish
two different types of focal curves.

The focal radius s f : S1 → R∪ {∞} is implicitly defined
by y(s f (ϕ), ϕ) = 0, where s f (ϕ) is chosen to be minimal
(thereby capturing the distance to the first occurrence of a
focal point) or set to ∞ if γϕ does not generate a focal point.
Let D ⊆ S1 be the set, where s f is finite. A focal curve is
said to be closed if D = S1, as for example on the ellipsoid in
Fig. 3. Otherwise, D consists of disjoint intervals of S1 and
we say that every connected component of f p corresponding
to such an interval is unbounded. We will by abuse of lan-
guage also refer to one component of f p as a focal curve of
p. See Fig. 3 on the right for a couple of unbounded focal
curves on a height surface.
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Consider now a focal curve of p, parametrized by f p(ϕ) =
Op(s f (ϕ), ϕ). Differentiating yields

ḟ p(ϕ) = ṡ f (ϕ)
∂Op

∂s
(s f (ϕ), ϕ) = ṡ f (ϕ)γ̇ϕ(s f (ϕ)) , (2)

where γϕ generates the focal point f p(ϕ). We say that f p(ϕ)

is a regular focal point if ḟ p(ϕ) �= 0 and conclude from the
last equation that the geodesic γϕ generating the focal point
f p(ϕ)meets f p tangentially at that point. Since ḟ p vanishes
at points where s f becomes extremal we refer to such focal
points as focal cusps. Differentiating y(s f (ϕ), ϕ) = 0 one
obtains

ṡ f (ϕ) = − yϕ(s f (ϕ), ϕ)

ys(s f (ϕ), ϕ)
,

where the denominator never vanishes as discussed in
[34]. A focal cusp Op(s0, ϕ0) is therefore characterized by
yϕ(s0, ϕ0) = 0 in addition to y(s0, ϕ0) = 0.

2.4 Cut locus

Regarding the global injectivity of Op one usually considers
the concept of the cut locus [3,36]. An important difference
between the cut locus C p and the focal curve f p of a point
p ∈ M is that the latter is defined in terms of locally available
information, i.e. it requires only knowledge of the metric
tensor along the geodesic generating the considered focal
point. The cut locus however is defined in a global sense,
since it incorporates the global notion of a shortest path.

Let sc(ϕ) ∈ R∪{∞} denote the minimal parameter value
such that the geodesic s 	→ γϕ0(s) stops being a shortest path
for s > sc(ϕ). It is useful to set sc(ϕ) = ∞, if the geodesic
γϕ remains a shortest path while it extends infinitely. Then
the cut locus of p is given by

C p = cl
{

Op(sc(ϕ), ϕ) |ϕ ∈ S1, sc(ϕ) < ∞
}
,

where cl denotes the topological closure. It is well-known
that rp ≤ sc(ϕ) ≤ s f (ϕ), i.e. the exponential map looses
its global injectivity in general before this becomes locally
noticeable.

A focal point f p(ϕ)where s f (ϕ) = sc(ϕ) has to be a focal
cusp that is locally accessible as indicated by yϕ(s f (ϕ), ϕ) =
0. Furthermore it lies on the topological boundary of C p.

In order to generalize our discussion, it is appropriate
to consider a finite discrete set of reference points P =
{p1, . . . , pn} instead of just a single point p. In order to
distinguish between the reference points and other points
on M it will be convenient to also refer to the elements of
P as sites. We define the cut locus CP of P as the clo-
sure of the set of all points having at least two shortest
paths to elements of P . This definition is compatible with
the above cut locus definition for a single reference point,
[35]. Furthermore it generalizes the typical notion of the

Fig. 4 Symmetry set and cut locus

Voronoi diagram VP of P , the latter being usually defined
in terms of a distance partition of M into Voronoi regions
R(p) = {q ∈ M : d(p, q) ≤ d(r, q) ∀r ∈ P}, whose
boundaries ∪p∈P∂R(p) form VP . It can be shown that in
general VP ⊂ CP , whereas in the Euclidean setting both
notions coincide. Note that while the cut locus concept is
even more general as it allows for an arbitrary closed subset
of M to be used as a reference set, we will focus in this paper
on the definition given above, conveniently denoting CP also
as the (geodesic) Voronoi diagram of P .

Its local counterpart is called the symmetry set SP of P =
{p1, . . . , pn} as given by

SP = cl
{
m| m = Opi (s, ϕ) = Op j (s, ψ) , (i, ϕ) �= ( j, ψ)

}
i.e. as the closure of all points m ∈ M , which are connected
with two distinct points pi , p j ∈ P via (at least) two geo-
desics of equal length. The cut locus CP is contained in the
symmetry set SP , see e.g. Fig. 4, which by construction can
be determined using the medial equation

Op(s(λ), ϕ(λ)) = Oq(s(λ), ψ(λ)). (3)

By differentiating this equation with respect to λ one obtains
the so-called medial differential equation (MDE, [27]), which
will be used later on to determine geodesic Voronoi diagrams.

2.5 Structure of geodesic Voronoi diagrams

In the following we discuss the structure of geodesic Voronoi
diagrams on a smooth surface which in the two-dimensional
case is known to be a graph, c.f. [17,18], consisting of mul-
tiple branches. In contrast to the cut locus consisting of
branches we say that the symmetry set consists of medi-
als, the latter being described by the medial equation. As
explained above each branch of the cut locus is contained
in the corresponding medial. We therefore first discuss the
structure of the medials and afterwards focus on the branch-
ing behaviour of the cut locus, characterizing the latter in
terms of circumcircles.

For our purposes it is convenient to distinguish between
locally and globally induced medials with the correspond-
ing cut locus branches being named analogously. More pre-
cisely we will call a medial beginning respectively ending in
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Fig. 5 Two families of geodesics tracing a cut locus branch.

a focal cusp locally induced, whereas it is said to be globally
induced otherwise. According to this definition any medial
arising from considering the medial equation with two dis-
tinct reference points is globally induced.

As an example for a locally induced medial consider Fig.
5. The light red medial is traced by two families of geodesics
(blue) starting in p as described by the medial differential
equation [with q = p in Eq. (3)]. Those families degenerate
to a single geodesic (black) connecting p and the focal cusp,
where the MDE becomes singular. However, the endpoint of
the black geodesic is a point on the medial, which is locally
accessible, as it is characterized as a focal cusp. The splitting
of the single black geodesics into a pair of blue geodesics
is closely related to the geodesic bifurcation of the geodesic
generating the focal cusp, see Sect. 3.3, and discussed in the
context of natural starting points in Sect. 4.3.

Examples for globally induced medials are bisectors
within a Voronoi diagram or the cut locus of a single ref-
erence point on an unbounded cylinder. Notice that in both
cases one obtains a point on the medial as soon as one knows
a distance minimizing connecting geodesic [34] by using the
middle point on the corresponding geodesic.

Having briefly discussed medials we will now outline how
the intersections of medials give rise to the branching points
of the cut locus. For this consider the Voronoi diagram for
the five sites (colored red) shown in Fig. 6 on the right. It is
trivially contained in the respective symmetry set shown on
the left, which consists of several medials. In case the metric
of the ambient surface is not Euclidean each of those medi-
als is traced via the MDE incorporating appropriate initial
points, as discussed later in Sect. 4.3. However, proceeding
in this way one has to compute an initial point and a medial
for each pair of sites, resulting in redundant computations.
This redundancy becomes evident in our example, where five
sites induce ten different medials (left) of which the dotted
segments (middle) are unnecessary, producing the final result
(right).

In order to characterize the branching points of a geodesic
Voronoi diagram CP , note that every branching point b in CP

has at least three distinct shortest geodesic connections to the
sites in P , thereby determining a distance circle containing
no sites in its interior. We will call such a circle circumcircle
of the respective sites and its center b circumcenter. Our five
site example contains four such relevant circumcircles, with
one of those being depicted on the right of Fig. 6.

Note that contrary to the Euclidean case the considered
connecting geodesics of a circumcircle can end up on the
same site. Furthermore, the circumcenters respectively cir-
cumcircles do not need to be uniquely determined by three
given sites. In fact the presented Riemannian generalizations
of the familiar Euclidean concepts exhibit many non-trivial
phenomena, which we encounter in applications as witnessed
in Sect. 4. This necessitates the tools developed and presented
in the following sections.

2.6 Derivatives

In this paper we will frequently deal with medials and
homotopy curves, being curves on M described by GPCs
via λ 	→ Op(s(λ), ϕ(λ)). The tangent of such a curve is

directly given within the frame ∂Op
∂s ,

∂Op
∂s

⊥
. The vector ∂Op

∂s
is directly obtained from the geodesic differential equation

and ∂Op
∂ϕ

= y
∂Op
∂s

⊥
is calculated by solving the Jacobi equa-

tion for y.

Fig. 6 Redundant segments of
medials
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The higher order derivatives of Op can be expressed via
the partial derivatives of y, which is calculated by solving the
differentiated Jacobi equation discussed in [34]. First of all
∇
∂s
∂Op
∂s = ∇γ̇ γ̇ = 0 by the definition of a geodesic, implying

∇
∂s
∂Op
∂s

⊥ = 0. Since ∂Op
∂s and ∂Op

∂ϕ
are the basis fields induced

by geodesic polar coordinates, their Lie bracket vanishes.
Taking into account that the Levi–Civita connection ∇ is
torsion-free [3], this yields

∇
∂ϕ

∂Op

∂s
= ∇
∂s

∂Op

∂ϕ
,

For the derivatives with respect to the family parameter λwe
obtain the useful expressions

∇
dλ

∂Op

∂s
= ∇
∂s

∂Op

∂s
ṡ + ∇

∂ϕ

∂Op

∂s
ϕ̇ = ∇

∂s

∂Oq

∂ϕ
ϕ̇

= ∇
∂s

(
y
∂Op

∂s

⊥)
ϕ̇ = ys ϕ̇

∂Op

∂s

⊥
,

∇
dλ

∂Op

∂s

⊥
= −ys ϕ̇

∂Op

∂s
.

3 Contribution

In this section we extend the homotopy approach for com-
puting connecting geodesics described in [34]. We begin
by recalling this method briefly and motivate the geodesic
bifurcation, which is investigated and discussed afterwards.
Building on these results we describe how to use the geodesic
bifurcation within the homotopy approach.

In general, surfaces can have a complicated distribution
of positive and negative Gaussian curvature. To illustrate
our approach we have included several pictures based on
numerical examples calculated using an implementation of
the presented methods, focusing on the surface parametrized
by f (u, v) = (u, v, cos(u) + sin(v)), if not stated other-
wise. While our methods deal with arbitrarily parametrized
surfaces, possibly compact and covered with many charts,
we have chosen this didactic example with regard to its rich
presence of focal curves and the abundantly occurring asso-
ciated phenomena studied in this paper. Please also note that
the appearing boundaries are in fact a necessity of the visu-
alization as all considered manifolds have no boundary.

3.1 Homotopy approach (HA)

For a brief illustration of the method we focus on the generic
situation shown in Fig. 7, where the curvature of a surface
patch causes the geodesics emanating from p to intersect, as
indicated by the presence of a focal curve f p, colored in dark
red. We have placed a point q within the region bordered by

Fig. 7 Generic situation for the HA

the focal curve, which we will call the focal region within
this example.

In order to calculate the connecting geodesics between p
and q, [34] suggests to construct a regular curve Q : I → M
(black) passing through q. This so-called homotopy curve
Q can be chosen arbitrarily to a large extent, except that it
has to intersect the focal curve transversally and should start
and end outside the focal region. Furthermore the homotopy
curve is constructed to yield a geodesic connecting p with
its start point Op(sb, ϕb) = Q(tb) = qb. A homotopy curve
satisfying all these properties will be called valid (within the
HA). The HA allows for tracing a component of the one-
dimensional solution set S of Op(s, ϕ) = Q(t), yielding a
solution curve S : λ 	→ (s(λ), ϕ(λ), t (λ)).

The solution set S contains information about the connect-
ing geodesics between every point on the curve Q and p in
this setting. More precisely, if q = Q(tq), the initial values
of the corresponding connecting geodesics are given by the
GPCs of q:
{
(sq , ϕq) | (sq , ϕq , tq) ∈ S

}
.

We refer to the process described above of determining the
solution curve S(λ) within the HA by saying that the curve
Q is traced by the family of geodesics γϕ(λ) = Op(·, ϕ(λ)).

Figure 8 depicts the projection of the solution curve into
the (t, ϕ) parameter plane and illustrates how to collect the
three (blue) geodesic connections from p to q by considering
that q = Q(tq). Within our prototypical setting and exempli-
fied by Fig. 8, it is obvious that every point lying on Q and
contained in the interior of the focal region has exactly three
connecting geodesics (blue) to p, while those points on the
border have two (cyan). The connecting geodesics from the
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Fig. 8 Solution curve of the HA in (t, ϕ)-space

points on Q, which are outside the focal region are unique
(green). The characteristic behavior of the (t, ϕ)-solution in
its extremal points is phrased by saying that the family γϕ(λ)
is reflected by the focal curve, i.e. it reflects at points where
the corresponding geodesic generates a focal point, marked
dark red. For a more detailed explanation of the HA see [34].

3.2 Geodesic bifurcation

In order to explain and understand the geodesic bifurcation
we have to examine the solution curves obtained by tracing
a collection of homotopy curves. For this purpose consider
the left part of Fig. 9 depicting three different homotopy
curves starting in qb. The right part shows projections of the
corresponding solution curves in the (s, ϕ) parameter plane.
It also visualizes the focal curve f p via s f (ϕ) in dark red
appearing as a kind of parabola opening in s-direction with
its lower part corresponding to the left arc of f p. The blue
curve on the left is a valid homotopy curve as it starts and ends
outside of the focal region bordered by f p while crossing
f p transversally and the same applies for the green curve,
although it is closer to being tangential to the left arc of the
focal curve. The cyan curve misses the left arc of the focal
curve completely and does not end outside the focal region,
i.e. it is not valid.

The corresponding solution curves in the parameter dia-
gram for the valid homotopy curves consist of one connected
component. However, the cyan solution set consists of two
connected components. The HA would only trace the upper

component of it, while the lower remains locally inaccessi-
ble.

Imagine the three cases shown to be embedded within a
one-parameter family of homotopy curves and correspond-
ing configurations in the (s, ϕ)-plane. In this family we can
expect one homotopy curve to meet the focal curve tangen-
tially. Note that the HA as presented in [34] fails for such
homotopy curves, i.e. excluding geodesics generating a focal
point from being used as homotopy curves. In the following
we will explicitly deal with this tangential situation.

The solution curve S : λ 	→ (s(λ), ϕ(λ), t (λ)) within the
HA is characterized by

Op(s(λ), ϕ(λ)) = Q(t (λ)). (4)

Differentiating with respect to λ and using (1) yields

ṡ
∂Op

∂s
+ yϕ̇

∂Op

∂s

⊥
= ṫ Q̇, (5)

In order to determine the tangent vector Ṡ(λ), consider
taking scalar products to obtain

ṡ =
〈

Q̇,
∂Op

∂s

〉
ṫ yϕ̇ =

〈
Q̇,
∂Op

∂s

⊥〉
ṫ . (6)

Without loss of generality we assume Q to be parametri-
zed by arc length. Then the above equations, together with
the additional condition ṡ2 + ϕ̇2 + ṫ2 = 1, can be solved
for Ṡ(λ) = (ṡ, ϕ̇, ṫ) uniquely up to orientation, provided

that y and

〈
Q̇,

∂Op
∂s

⊥〉
do not vanish simultaneously. This

tangent information can be used within classical numerical
ODE solvers or predictor-corrector methods as discussed in
[34].

Consider now a point S(λ0) = (s0, ϕ0, t0) on the solution
curve, where the above equations become singular and cannot
be uniquely solved, i.e. we have

y(s0, ϕ0) = 0 ⇔ Q(t0) ∈ f p ,〈
Q̇(t0),

∂Op
∂s (s0, ϕ0)

⊥
〉
= 0 ⇔ Q̇(t0) ‖ γ̇ϕ0 .

Using Eq. (2) we conclude that Q has to meet the focal curve
f p tangentially in Q(t0) in order for the Eq. (6) to become
singular and vice versa. In this case, we still obtain ṡ0 = ṫ0,

Fig. 9 Two valid curves
(green, blue) and one non-valid
homotopy curve (cyan) and their
preimages under Op
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but cannot infer ϕ̇0 from (6) indicating that the solution set
of (4) does not necessarily have the topology of a curve. In
fact, it will turn out that it consists of two branches meeting
in (s0, ϕ0, t0).

In the following we use the shorthand notation ṡ0 =
ṡ(λ0), ϕ̇0 = ϕ̇(λ0), etc. The tangential vectors (ṡ0, ϕ̇0) of
those branches in the intersection point (s0, ϕ0) cannot be
obtained from the first-order derivatives. Instead one may
apply L’Hôpital or equivalently differentiate Eq. (5) again
with respect to λ yielding

s̈
∂Op

∂s
+ ṡ

∇
∂λ

∂Op

∂s
+ (ys ϕ̇ + yϕ̈)

∂Op

∂s

⊥
+ yϕ̇

∇
∂λ

∂Op

∂s

⊥

= ṫ
∇
∂λ

Q̇ + ẗ Q̇,

where the partial derivatives of Op respectively y are evalu-
ated in (s0, ϕ0). Using the derivatives introduced in Sect. 2.6
and collecting terms, one obtains

(
s̈ − yys ϕ̇

2
) ∂Op

∂s
+

(
yϕ̈ + 2ys ṡϕ̇ + yϕϕ̇

2
)
∂Op

∂s

⊥

= ṫ
∇
∂λ

Q̇ + ẗ Q̇. (7)

Substituting y(s0, ϕ0) = 0 and using the geodesic curva-
ture κ of Q to express

∇
∂λ

Q̇(t0) = κ(t0)Q̇
⊥(t0) = κ(t0)

∂Op

∂s

⊥
(s0, ϕ0),

equation (7) simplifies to

s̈0
∂Op

∂s
+

(
yϕϕ̇

2
0 + 2ys ṡ0ϕ̇0

) ∂Op

∂s

⊥

= ẗ0
∂Op

∂s
+ ṫ0κ(t0)

∂Op

∂s

⊥
.

By comparing coefficients we obtain s̈0 = ẗ0 and a quadratic
equation for ϕ̇0:

yϕϕ̇
2
0 + 2ys ṡ0ϕ̇0 − ṫ0κ(t0) = 0.

At this point, the presence of the two possible values

ϕ̇0 =
−ys ṡ0 ±

√
y2

s ṡ2
0 + ṫ0κ(t0)yϕ

yϕ
(8)

analytically illuminates the existence of two solution branches
meeting in (s0, ϕ0, t0). Therefore, we speak of a geodesic
bifurcation occurring.

The projection of the solution set S into the (s, ϕ)-plane
is colored in black in the example shown in Fig. 12 and con-
sists of two differentiable solution branches meeting in the
bifurcation point (s0, ϕ0). These become accessible using the
tangent information from Eq. (8) together with ṡ0 = ṫ0 from
Eq. (6).

Using this tangent information adequately within the HA,
as described in Sect. 3.4, the method yields two families of
geodesics tracing Q, which correspond to the two solution
branches. Therefore we consider curves, which meet the focal
curve tangentially, and especially geodesics generating focal
points from now on as valid homotopy curves.

3.3 Geodesics as homotopy curves

From now on consider the homotopy curve Q to be a geodesic
γϕ0 , which generates the focal point Op(s0, ϕ0). As Q is a
geodesic, we haveκ(t0) = 0 in Eq. (8). In this case the tangent
directions of the two solution branches in the bifurcation
point are given by

ṡ0 = ṫ0 and

(
ϕ̇0 = 0 or ϕ̇0 = −2ṫ0

ys

yϕ

)
. (9)

These branches are illustrated in Fig. 10, fitting into the
collection of solution sets depicted in Fig. 9. The black
straight line ϕ = ϕ0 in the parameter diagram corresponds
trivially to the (black) geodesic γϕ0 . The curved branch col-
ored in black in the parameter diagram is the one we are
interested in. It becomes accessible using the non-trivial tan-
gent information from the last equation.

Since the equations for the tangent information in the
bifurcation/focal point require yϕ(s0, ϕ0) not to vanish, they
cannot be used when Op(s0, ϕ0) is a focal cusp. We consider

Fig. 10 Geodesic (black) as
homotopy curve and its solution
branches within the HA in black
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now this remaining case. The derived equations are not suf-
ficient to obtain the tangent information in this very special
case, which requires differentiating Eq. (7). Despite the com-
pact presentation using the notational shortcuts outlined in
Sect. 2.6, it turns out that these calculations are quite tedious,
though straightforward. Performing them yields besides ṡ0 =
0:

s̈0 = ẗ0, ϕ̇0 = 0 or ϕ̇0 = ±
√

−3ẗ0
ys

yϕϕ
. (10)

In addition the same calculations can be used to determine
the higher order derivative ϕ̈0 in every regular bifurcation
point: Here we already have s̈0 = ẗ0 and obtain

ϕ̈0 = 4ysϕ
ys

y2
ϕ

− 8

3
yϕϕ

y2
s

y3
ϕ

. (11)

Note that the presented equations in this section for the tan-
gent or higher order information are only valid in the bifurca-
tion point (s0, ϕ0, t0). However, they can obviously be used
to obtain first respectively second order Taylor approxima-
tions of the solution branches, as shown in green respectively
blue in Fig. 13 on the left. We have used a second respec-
tively first order Taylor approximation for s respectively ϕ
in the focal cusp to yield the green parabola approximating
the black solution branch in the figure on the right.

3.4 Geodesic bifurcation within the HA

Up to now we were mainly interested in the bifurcation phe-
nomenon to resolve the singularity of the exponential map
in a focal point. In the following we combine the equations
for the tangent information in non-singular points (6) and in
the bifurcation points (9) in order to use geodesics, which
generate a focal point, as homotopy curves within the HA.

Again, the homotopy curve Q is a geodesic γϕ0 generating
a focal point at Op(s0, ϕ0). The point (s0, ϕ0, t0)with t0 = s0

is the bifurcation point in the parameter space, i.e. it lies on
the non-trivial solution branch and serves as an initial value
to start tracing it. At this point, one has to use the tangent
information from Eq. (9) to perform an initial step away from
the singular bifurcation point and the trivial solution branch

Fig. 12 Two solution branches meeting in (s0, ϕ0)

ϕ = ϕ0. This can be achieved using a small Euler integration
step based on the first order Taylor approximation using a
small step ṫ = 	λ:

ϕ1 = ϕ0 − 2
ys

yϕ
	λ, s1 = s0 +	λ, t1 = t0 +	λ

The sign of ṫ = 	λ actually determines the tracing direction
on the solution path. A more accurate initial step is obtained
by using the second order information given by Eq. (11).
Now the point (s1, ϕ1, t1) serves as an initial value suitable
for obtaining a family of geodesics tracing Q as described
by Eq. (6).

From now on we will refer to performing the HA with a
geodesic γϕ0 (which generates a focal point) as homotopy
curve, simply as applying geodesic bifurcation to the geo-
desic γϕ0 . This process is illustrated in Fig. 11 where the geo-
desic γϕ0 is colored black. The green geodesics are obtained
by tracing γϕ0 upwards. The purple geodesics trace it down-

Fig. 11 Family of geodesics tracing the black geodesic obtained by applying geodesic bifurcation
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Fig. 13 Left First (green) and
second (blue) order Taylor
approximation of the solution
branch (black) in a regular focal
point. Right Mixed Taylor
approximation (green) of the
solution branch (black) in a
focal cusp

wards, whereas after reflection tracing continues upwards
along γϕ0 yielding the geodesics colored orange.

Note that aside from the tangent information, it is benefi-
cial to exploit the original Eq. (4) to perform corrector steps
that ensure one stays on the solution curve. These predictor-
corrector methods [2,7] trace regular solution curves in gen-
eral more efficiently than classical ODE solvers. However as
our solution set fails to be a regular curve in the bifurcation
point, one needs to be aware that after an inaccurate integra-
tion step followed by corrector steps one may end up on the
wrong branch. To ensure the accuracy of the initial step we
recommend using the second-order information (11).

Observe that we cannot obtain the second order informa-
tion ϕ̈0 in a focal cusp from the presented equations. How-
ever, the angle between the two branches there is actually
π
2 , making the initial integration step unproblematic. This is
easily seen by comparing the tangents of the two branches
and also visible in the numerical example depicted in Fig. 13
on the right.

Aside from the numerical examples presented in this
papers, we have tested our approach not only with geodesics
as homotopy curves but also in case Q is a regular non-
geodesic curve tangentially meeting the focal curve. In all
cases the method exhibited a numerically stable behavior.
Thus, we consider it to be applicable as an efficient compu-
tational tool.

4 Applications

In this section we give a proof of concept for the geodesic
bifurcation in order to outline its ability to capture distance
related phenomena in various contexts. We strive for a pre-
sentation which illuminates the structure of ambiguity of con-
necting geodesics and how geodesic bifurcation is applied in
this context. As an introductory example we illustrate how
the HA profits in situations where geodesics present them-
selves as natural homotopy curves. Afterwards, considering
examples, we discuss how to use geodesic bifurcation for
computing distances on manifolds having a single closed
focal curve.

Fig. 14 Focal curve f p and its preimage under Op

We also discuss how to apply the geodesic bifurcation to
solve the singularity of the medial differential equation in the
focal cusp, providing starting points for tracing the locally
induced cut locus branches. Furthermore we combine the
medial equation and the HA in order to determine circumcir-
cles as branching points of geodesic Voronoi diagrams. These
considerations lead to a computational approach avoiding
redundant tracing of medial segments by exploiting the
examined natural starting points.

4.1 Introductory example

Figure 14 shows a generic situation on a height surface where
a focal curve f p is depicted in red. We consider the problem
of determining the shortest paths from p to the focal curve
f p. This problem reduces to the computation of all connect-
ing geodesics from p to points on f p, i.e. to determining the
preimage of f p under Op. We use the blue geodesic γ to
apply geodesic bifurcation in the focal point q, colored yel-
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Fig. 15 Preimages of the focal curve under expp

low. The solution branch of the geodesic bifurcation is shown
in black in the parameter diagram. We follow this branch until
reaching the cyan point, yielding the cyan geodesic.

In order to use the curve f p(ϕ) as a homotopy curve within
the HA, observe that the coordinates of the cyan-colored
point serve as suitable initial values. Thereby we obtain a
family of geodesics tracing the focal curve, consisting of the
shortest paths from p to f p, represented by the cyan curve in
the (s, ϕ)-plane.

In principle the classical HA could also yield the cyan
geodesic. However, this would require the construction of
a valid homotopy curve Q, i.e. one has to ensure that Q
starts and ends outside of the region bounded by f p, does not
intersect f p tangentially and passes through the endpoint of
the blue geodesic. Furthermore one would have to provide
suitable geodesic polar coordinates of some point on Q as
initial values for tracing it. From an application point of view
this is unsatisfying. However, note that in our context the blue
geodesic is a priori given and thereby suggests itself to apply
geodesic bifurcation.

Figure 15 shows an analogous situation on an ellipsoid.
Applying geodesic bifurcation to the blue geodesic yields
two other geodesics connecting p with the yellow focal point.
Their GPCs serve as initial values for obtaining two families
of geodesics tracing the focal curve. Again the cyan curve in
the parameter diagram consists of the GPCs of the shortest
paths from p to f p.

4.2 Distance computation

Consider the ellipsoid shown in the sequence in Fig. 16,
where the reference point p has been placed on its back side.
The focal curve f p of p is depicted in red and a point q
(blue) is placed somewhere within the region bordered by
f p. Our goal is to determine the distance dM (p, q), which is
accomplished by applying geodesic bifurcation.

First of all we easily obtain the black geodesic γ con-
necting p and q, shown in (a), using the HA as discussed
in [34]. Now we extend γ until it generates the yellow focal
point as indicated in (b). Applying geodesic bifurcation to
γ yields a family of geodesics connecting p to points on
γ . We distinguish between the geodesics tracing γ upwards
colored in green respectively those tracing γ downwards,

Fig. 16 Using geodesic bifurcation to compute distances on an ellip-
soid

colored in purple, see (c). The green family reflects at f p, cf.
(d), where the depicted geodesic generates a focal point. The
tracing continues downwards γ until we reach the configura-
tion depicted in (e) where the green geodesic finally connects
p and q. The family of purple geodesics analogously traces
downwards γ yielding a first connecting geodesic as depicted
in (f) before it reflects at f p, see (g), and ends up in the config-
uration shown in (h) providing a fourth connecting geodesic.
The geodesic bifurcation has yielded four connecting geo-
desics from p to q as shown in the final figure (i), including
the shortest path from p to q.

Although we exemplified the idea of computing the dis-
tance on the ellipsoid in a particular example, the method
described above applies to any configuration of p and q,
where these points are separated by f p. Thus the outlined
approach always yields four (distance-) relevant connect-
ing geodesics, meaning that one of them is guaranteed to
be the (not necessarily unique) shortest path from p to q.
This is illustrated in Fig. 17 where the symmetry set (light
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Fig. 17 Distance relevant
connecting geodesics

red) decomposes the region bordered by the focal curve into
four sub-regions, see also [8]. The figure shows the result-
ing set of distance relevant geodesics for a point in each of
those sub-regions, with the shortest path being marked in
cyan. The blue geodesics all intersect the cut locus, being the
longer vertical branch of the symmetry set.

Having discussed the most involved case, we can state, that
the distance computation problem for all configurations of p
and q is easily achieved by computing an initial connecting
geodesic γ and applying geodesic bifurcation adequately.

Solving the distance problem using the presented approach
is feasible in this case due to the fact that the considered
ellipsoid has a single closed focal curve, implying that every
geodesic generates a focal point and can therefore be used to
apply geodesic bifurcation. We expect this method to gener-
alize to similar surfaces with a closed focal curve as exempli-
fied in Fig. 18, showing a distance-relevant set of connecting
geodesics that has been obtained by applying geodesic bifur-
cation to the black geodesic.

4.3 Natural starting points

Having discussed elementary distance computations we turn
our attention to finding natural starting points for a redun-
dancy minimizing computation of cut loci. Please recall that
the cut locus has a graph structure consisting of cut locus
branches, which are subsets of corresponding medials char-
acterized by the medial Eq. (3). In order to trace those medials
we differentiate (3) with respect to λ and obtain the medial
differential equation (MDE)

Fig. 18 Closed focal curve on a topological sphere

∂Op

∂s
ṡ + ∂Oq

∂ϕ
ϕ̇ = ∂Oq

∂s
ṡ + ∂Oq

∂ϕ
ψ̇, (12)

where the partial derivatives of Op on the left are evaluated in
(s, ϕ), whereas on the right the corresponding parameters are
given as (s, ψ). Obviously a starting respectively end point
on the medial is required to initiate respectively terminate
the tracing process which can be performed using standard
numerical methods, see e.g. [2,7].

Each cut locus branch has the topological structure of
an interval which may be unbounded in one or both direc-
tions. If it terminates, the corresponding end point is either
a focal cusp or circumcenter as described in Sect. 2. There-
fore, in order to minimize redundant computations, we start
the aforementioned tracing process in these terminal points
if they exist and are known. If such points fail to exist as
for example in some Voronoi diagram of two points p, q,
we start tracing at the middle point of a distance minimizing
geodesic connecting p with q. We will discuss each of those
three natural starting points in the following three subsec-
tions.

4.3.1 Focal cusp

We will now consider cut locus branches which are locally
induced. Here focal cusps serve as natural starting points
for tracing these branches. However, as the MDE becomes
singular in the focal cusp, an initial tangent of the sym-
metry set has to be obtained in a different manner. Recall
Fig. 19 illustrating the behavior of the MDE near the focal
cusp.

Considering Eq. (10) describing how to deal with the geo-
desic bifurcation there. It implies a symmetrical situation
for the two appearing geodesics, as indicated by the green
parabola shown in Fig. 13 on the right. This parabola is col-
ored in black in the numerical example depicted in Fig. 19 on
the right, approximating the light red preimage of the sym-
metry set under Op.

Therefore taking a small Euler step using this tangent
information in both directions yields two new geodesics
(blue) providing suitable initial values for the MDE. After
this step, one is able to continue a regular tracing process

123



H. Thielhelm et al.

Fig. 19 Initial geodesics for the MDE and approximation (black) of
the symmetry set (light red) in parameter space

as described by the MDE. Thus, the geodesic bifurcation
gives access to the cut locus branch from its natural start-
ing point in the focal cusp, as confirmed by the numerical
example.

4.3.2 Middle point

As our second case we consider determining the cut locus
C{p,q} of two points p, q ∈ M for which no a-priori infor-
mation about potential initial respectively terminal points is
available. In order to obtain a natural starting point for this
globally induced medial we determine a distance minimizing
connecting geodesic and its mid point as illustrated in Fig.
20a (left). From this point we start the tracing process in both
directions as shown in the other two pictures. Note that there
appears to be a reflection behaviour of the considered medial
that is examined briefly in the following.

Using the terminology of 3.1 we can phrase the tracing
process in terms of two geodesic families tracing the medial
branch. More precisely taking scalar products of equation
(12) with ∂Op

∂s respectively ∂Oq
∂s yields

(
1 −

〈
∂Op

∂s
,
∂Oq

∂s

〉)
ṡ =

〈
∂Oq
∂ϕ
,
∂Op
∂s

〉
ψ̇

(
1 −

〈
∂Oq

∂s
,
∂Op

∂s

〉)
ṡ =

〈
∂Oq
∂ϕ
,
∂Oq
∂s

〉
ϕ̇.

By subtraction we obtain〈
∂Oq

∂ϕ
,
∂Oq

∂s

〉
ϕ̇ =

〈
∂Oq

∂ϕ
,
∂Op

∂s

〉
ψ̇,

indicating ψ̇ to vanish as soon as the tracing process of the
medial branch passes a focal point with respect to p, where
∂Oq
∂ϕ

= 0. Vice versa we have that ϕ̇ vanishes if ∂Oq
∂ϕ

= 0. The

vanishing of ψ̇ indicates that the family of geodesics starting
in p is reflected, which is immediate when incorporating the
results of Sect. 3.1. Since the two families are coupled via Eq.
(12) the endpoints of the family starting in q has to exhibit a
similar behavior.

In our example the reflection of the family starting in p
causes the medial to exhibit irregular points precisely at the
focal curve f p (dark red) as confirmed in Fig. 20b (left).
The point of self-intersection is actually located on the cut
locus C p which is contained in C{p,q}. After the considera-
tions already discussed, the astute reader will realize that this
implies the existence of another medial being locally induced
with respect to p and terminating in the focal cusp of f p, see
Fig. 20b (middle). In order to obtain the Voronoi diagram
C{p,q} these two medials have to be cut adequately as shown
in Fig. 20b (right), emphasizing that several segments of the
traced medials are in fact redundant.

Following up on the remark in 2.4 we note that the result-
ing geodesic Voronoi diagram exhibits a peculiar behaviour
not usually observed due to the ordinary definition of Voronoi
diagrams relying on Voronoi regions partitioning the under-
lying space with respect to the distance function. The gen-
eralized definition based on the cut locus encodes additional
distance information as indicated by the lower branch shown

Fig. 20 Two-point Voronoi diagram in the presence of focal curves. a Tracing a medial with reflecting behaviour, starting from the midpoint of a
connecting geodesic. b Symmetry set consisting of two medials, with the appropriate segments yielding the cut locus
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Fig. 21 Example for a circumcircle homotopy

in Fig. 20b (right) which is contained in the Voronoi region
Vp associated with p. More precisely any geodesic connect-
ing p with another point inside Vp is distance minimizing
precisely when it does not intersect the mentioned branch.

It is now evident that incorporating the focal information
with respect to p yields in fact two natural starting points,
being the branching point b respectively the focal cusp c.
The latter is locally accessible using the geodesic bifurcation
as explained in Sect. 4.3.1 and should be preferred to start
the complete cut locus tracing process, while it should termi-
nate in c. The problem of detecting branching points during
the tracing process leads us to the considerations in the next
subsection.

4.3.3 Circumcenter

In order to detect a branching point we rely on the circum-
circle characterization discussed in Sect. 2. As an example
consider the three black sites illustrated in Fig. 21, where
the point highlighted in red is the single branching point in
their Voronoi diagram and therefore a natural starting point.
We construct a family Gλ of geodesic circles with centers
m(λ) = Op1(s(λ), ϕ1(λ)) and radius s(λ) which ends up in
the desired circumcircle shown in the right picture by con-
sidering the equations

Op1(s(λ), ϕ1(λ)) = Op2(s(λ), ϕ2(λ))

Op3(s3(λ), ϕ3(λ)) = Op1(s(λ), ϕ1(λ)), (13)

where the first describes the medial between p1 and p2,
whereas the second specifies a geodesic connecting p3 and
the current point on the aforementioned medial. Differenti-
ating this system with respect to λ one obtains a differential
equation which combines the MDE and the HA to trace the
family Gλ of circles, terminating in the desired circumcircle
if s3(λ) ≥ s(λ).

The tracing process starts with λ = 0 in the situation as
depicted in Fig. 21 (middle). In order to obtain the corre-
sponding initial parameters we determine the shortest con-
necting geodesic (blue) of p1 and p2, the corresponding mid-
dle point m(0) and additionally the shortest connecting geo-

Fig. 22 Sequence of the tracing process of a geodesic Voronoi diagram
with six sites

desic from p3 to m(0) (not shown) with s3(0) ≥ s(0). We
end up in the configuration illustrated in the right picture
where the three involved geodesics (blue) are of equal length
and thereby end up on the center m(λ1) of their circumcircle,
which is the single branching point in their Voronoi diagram.

In the three site example obviously p3 is the only site
relevant to be considered for inducing a branching point of
the Voronoi regions associated with p1, p2, p3. However in
the presence of further sites p4, . . . , pn one easily extends
the above method to detect when the medial of p1 and p2

enters the Voronoi region of any other site. For this purpose
one merely has to append the additional equations

Opk (sk(λ), ϕk(λ)) = Op1(s(λ), ϕ1(λ)) for k = 4, . . . , n.

to the system (13) and proceed analogously, sopping if s(λ)
becomes larger than any sk(λ) for k = 3, . . . , n.

We conclude by noting that although we used our meth-
ods mainly to discuss and understand the singularities of the
exponential map in terms of the reflection behavior of the
geodesic families involved, the circumcircle approach com-
bining those methods with natural starting points as discussed
in this paper avoids redundant tracing of medials. This is illus-
trated in our example depicting a geodesic Voronoi diagram
of six sites on a curved surface with inherent focal curves of
the reference sites shown in Fig. 22.
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Fig. 23 Example for symmetry
sets (upper row) and
corresponding Voronoi diagrams
computed on the manifold given
by (14) with μ = 3.0, 2.9, 2.3

4.4 Concluding example

Note that our methods are able to deal with highly non linear
and curved manifolds with site constellations defining geo-
desic Voronoi diagrams whose topological structure depends
inherently on the underlying Riemannian metric as indicated
by our final example depicted in Fig. 23. Here a one parame-
ter family of surfaces parametrized by

f (u, v) = (u, v, u2 + v2 + μ(cos(u)+ sin(v))) (14)

with a perturbation parameter μ. To facilitate the visualiza-
tion we have employed a stereographic projection diminish-
ing the distracting distortions.

Comparing to our previous example in Fig. 20b (right)
which might have raised the impression of being patholog-
ical in the sense that the observed additional branch might
be a rare phenomenon, our final example shows that this
behaviour generically occurs together with sudden topolog-
ical changes as μ varies. More specifically for μ = 3.0 the
picture on the left topologically reminds of an Euclidean
Voronoi diagram with three collinear sites. A small variation
of μ produces a branching point and furthermore the appear-
ance of two locally induced cut locus branches as shown in
the middle. The corresponding symmetry set depicted above
obviously contains several redundant medial segments which
do not have to be traced when applying the discussed meth-
ods. A further variation of μ leads to the appearance of a
closed Voronoi region with two branching points in the con-
sidered region. Remarkably, those two branching points are
centers of two distinct circumcircles being described by the
same three sites.

Note that our computational approach inspired by the
smooth paradigm of classical Riemannian geometry allows
to analyze and understand these commonly occurring multi-
farious phenomena.

5 Conclusion

In this follow-up on [34] we presented a solution to deal
with the singularity occurring within the homotopy based
approach proposed there. More precisely we have analyzed
situations, where the homotopy curve meets the focal curve
tangentially in a regular focal point and even in the focal
cusp. A closer examination leads us to study the bifurcation
of two transversally intersecting solution branches in parame-
ter space. We have analytically investigated this bifurcation
and exposed tangent and higher order information of these
branches in terms of locally available information. Further-
more we have shown how to exploit this information for
a numerically stable implementation within the homotopy
approach.

Applications such as the medial axis or the cut locus,
though being global concepts are related to the local concept
of focal curves as classical theory predicts their branches to
originate in the examined focal cusps. The computation of
these concepts is efficiently and accurately performed trac-
ing medial branches using the medial differential equation.
Unfortunately the latter becomes singular in the origins of
the medial branches. Having solved the geodesic bifurcation
in the focal cusp we are able to provide two initial geodesics
lying on the corresponding medial branch. Thereby using this
result it is possible to naturally approach the medial branch
from the focal cusp.

The geodesic bifurcation presented in this paper allows
geodesics generating a focal point to be used as natural homo-
topy curves, dispensing the homotopy method in [34] from
any restrictions. Furthermore in case of the commonly occur-
ring locally induced non-injectivities of the exponential map,
such a geodesic is always available and can be used to obtain
a distance relevant set of connecting geodesics incorporating
the HA adequately.
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Especially for the illustrated surfaces with a single closed
focal curve, where every geodesic generates a focal point, this
is a valuable contribution. In this case, as we have discussed,
the method is able to calculate the distance of arbitrary points.
Contrary to previous approaches, this is done without requir-
ing the explicit knowledge of the focal curve and without
relying on the artificial construction of a homotopy curve.
Thus, by incorporating the geodesic bifurcation presented in
this paper, the homotopy approach unfolds its full potential
in the context of distance calculation.

Furthermore we have shown how to apply the presented
concepts for the computation of cut loci exploiting natural
starting points using the geodesic bifurcation. By combining
the HA and the medial differential equation we were able to
capture the branching points of Voronoi diagrams. Thus, we
were able to minimize redundant computations of segments
of medials.

Although the geodesic bifurcation significantly improves
upon the homotopy approach, it is limited since the gen-
eral non-injectivities of the exponential map cannot com-
pletely be understood considering focal situations only. In
general we can distinguish between two different origins for
the appearance of multiple geodesic connections. One can
be considered to be induced by Gaussian curvature in the
presence of focal curves, whereas the other case is induced
by the global topology of the surface. Having covered the
local aspects of geodesic ambiguity, the global aspects of
geodesic ambiguity remain theoretically and computation-
ally challenging. The latter requires additional tools provid-
ing topologically distinct geodesic loops. This can be con-
sidered a large topic for future research.

While being beyond the scope of this work, please note
that aside from the geodesic polar coordinates considered
here our approach applies directly to the more general Fermi
coordinates, too. In addition, due to the intrinsic setting only
relying on the metric tensor, our methods apply to energy
minimization as indicated by Maupertuis’ principle. Further-
more, our method generalizes to pseudo-Riemannian spaces
which can be investigated in an analogous way.
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