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Abstract This publication is a contribution to basic res-
earch in image comparison using eigenvalue spectra as fea-
tures. The differential-geometric approach of eigenvalue
spectrum-based descriptors is naturally applicable to shape
data, but so far little work has been done to transfer it to the
setting of image data painted on a rectangle or general curved
surface. We present a new semi-global feature descriptor that
also contains information about geometry of shapes visible
in the image. This may not only improve the performance
of the resulting distance measures, but may even enable us
to approach the partial matching problem using eigenvalue
spectra, which were previously only considered as global fea-
ture descriptors. We introduce some concepts that are useful
in designing and understanding the behaviour of similar fin-
gerprinting algorithms for images (and surfaces) and discuss
some preliminary results.

Keywords Laplace · Eigenvalue · Fingerprint ·
Image retrieval · Image comparison · Partial matching ·
Perturbation theory

1 Introduction

1.1 Motivation

The need for distance comparison of data arises for multiple
reasons, among them organization of data collections, data
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retrieval using search engines and ranking of results, detec-
tion of near-duplicates (e.g. for legal purposes) and classi-
fication. A very direct way to check if a geometric object
is possibly an illegal duplication can be realized by directly
employing shape matching techniques that have been used
for manufacturing precision quality control, see, e.g. [12]
for an early contribution regarding complicated free form
objects. Those direct shape comparison methods could be
applied for image comparisons as well, e.g. via comparing
shapes of surfaces corresponding to grey value images. In
this context the usage of intrinsic shape features of a surface
such as information on stable umbilical points together with
their respective type classification (star, monstar, lemon) had
been suggested in [31], Sect. 4.2 and later on developed in
detail in [16,17]. Actually, the approach considered there
is a shape matching method combining feature extraction
(via umbilical points) with wire frame matching where the
wire frames are obtained from curvature lines and geodes-
ics. Direct shape matching procedures are considered to be
computationally expensive. Therefore, a key idea employed
to make these applications efficient is not to directly compare
the data objects themselves, but instead reduced representa-
tions thereof which take less storage space while retaining
information about relevant features, ideally in a form that
reduces the computational cost of comparison and retrieval.
In the case of geometry data, the eigenvalue spectrum of
the Laplacian has been successfully employed for this pur-
pose. This technique has also been applied in the setting of
image data. The motivation of our work is to improve on
the usage of Laplacian eigendecompositions for image fin-
gerprinting in several ways. We consider a wider range of
differential operators than before and provide a better under-
standing of the way information present in the image affects
the eigenvalue spectrum. This will enable the deliberate con-
struction of fingerprinting algorithms with desired properties.
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A specific property we have in mind is the ability to repre-
sent information about parts of the image in the fingerprint,
thus respecting partial correspondences better than a purely
global feature extraction method would. We also go beyond
the mere eigenvalue spectrum and consider certain interre-
lations of the eigenfunctions and how these could be used
for partial matching [3]. Contrary to approaches relying on
local descriptors, we want to avoid the extraction of discrete
features to achieve continuity of the distance measure, which
we expect to be beneficial to applications where robustness
is required. Last, although we are currently more concerned
with the transfer of shape matching techniques to flat images,
the differential geometric formulation should allow for trans-
fer of our findings back to curved shapes that carry colour or
other data besides geometry on their surface.

1.2 Background

Methods for image indexing in general are based on the
extraction of global or local features, such as colour his-
tograms or textures and shapes. Global features pertain to
the entire image, whereas local features need to be deter-
mined as relevant and are associated to a certain location.
The features are extracted from the input in the form of fea-
ture descriptors, which offer a compact representation of the
feature that is often chosen to be invariant under certain input
transformations such as rotation and scaling. Several suc-
cessful methods for generating local descriptors [21] utilize
the scale invariant feature transform [15,21], but many other
algorithms are in use as well, e.g. [22,32].

Global descriptors enable comparison of images but usu-
ally do not contain high-level descriptions of local aspects.
The comparison of images is then done indirectly, by com-
paring their descriptors. Local descriptors additionally offer
the possibility to compare only parts of the described images
by means of constructing a correspondence between their
local features. Important approaches to this are described in
[4,29]. If these methods are used for image retrieval, they
require a classification step for local features to be able to
generate candidates for partial comparison.

1.3 Eigenvalue fingerprints for shapes

One specific class of global feature descriptors is derived
from the Laplacian. For scalar-valued functions on Rie-
mannian manifolds, the generalization of the Laplacian is
also called Laplace-Beltrami operator. Its spectrum has been
employed as a global fingerprint of the geometry data given
by the manifold [26,27]. Since the Laplace–Beltrami oper-
ator is defined as the divergence of the gradient, it uses
only notions of internal geometry and is thus invariant under
isometries. The spectrum of the Laplace–Beltrami operator
is known to contain specific information about the manifold,

such as area, boundary length and Euler characteristic [1,19].
Numerical experiments have shown that these features can
well be approximated using a finite prefix of the spectrum
[25]. Eigenvalues are naturally related to scale in that vari-
ation of small-scale features has little effect on the lower
eigenvalues. This means that the more prominent, large-scale
features of the geometry are robustly represented in the first
few eigenvalues. Although pairs of nonisometric but isospec-
tral manifolds exist [8,13], they seem to be an exception
with little practical impact on the usefulness of the spectrum
to distinguish manifolds: The fingerprints obtained from the
Laplace–Beltrami operator, under the name “shape-DNA”,
have been used quite successfully for shape classification
[18]. It should be noted that, aside from its use for finger-
printing, the Laplacian eigenvalues and eigenfunctions are
employed for various tasks of geometry processing and shape
analysis.

If the manifold we are considering has a boundary, we
will need to impose some boundary condition on it. We think
of boundary conditions as an additional property associated
with a manifold’s boundary, but formally a boundary condi-
tion is rather a predicate that restricts, by locally prescribing
properties of functions, the set of functions on the mani-
fold we are going to consider when we solve the eigenvalue
problem. Without boundary conditions, the spectrum cannot
be expected to be discrete. Two important kinds of bound-
ary condition are the Dirichlet boundary condition, which
in our case requires function values to approach zero near
the boundary, and the Neumann boundary condition, which
requires the directional derivative in the direction perpendic-
ular to the boundary to approach zero.

In physics, the Laplacian is used in the wave equation and
the heat equation [5], among others. In its simplest form, the
wave equation is stated as

∂2 f

∂t2 = div grad f

while the heat equation is

∂ f

∂t
= div grad f.

These equations describe the time evolution of a scalar func-
tion. If this function at t = 0 is a Laplacian eigenfunction
with eigenvalue λ, the time evolution of the heat equation can
be given explicitly as f (t) = e−λt f (0), with the time vari-
able being separated. Therefore, the eigendecomposition of
the Laplacian provides the fundamental solution to the heat
equation: The amount of heat that has flown from x1 to x2 in
time t can be expressed by the heat kernel H as H(x1, x2, t),
see, e.g. [9,28]. Evaluating the heat kernel is straightfor-
ward using the previous explicit time evolution formula and
the principle of superposition. The same approach can be
applied to the wave equation. In that case, the eigenvalues
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are proportional to the square of the physical frequency. Thus
physics provides at least two helpful visualizations of Lapla-
cian eigenfunctions: one can think of them as the forms of
stationary waves, or as the stationary distributions of some
diffusing quantity such as heat that do not change their form
while they decay at a rate given by the eigenvalue.

The heat equation interpretation has given rise to at least
two other descriptors: heat kernel signature and heat trace.
The heat kernel signature is a descriptor for points on a mani-
fold that captures their surroundings at all scales. Intuitively,
it is the time-evolution of the amount of heat that remains at
point x , which is H(x, x, t) in terms of the heat kernel. Small-
scale geometric features in the immediate neighbourhood of
x dominate the early evolution of heat flow, while for larger
t , coarser features that are far away have the most influence.
This is in accordance with the fact that the higher eigenval-
ues, related to eigenfunctions of high spatial frequency and
sensitive to small-scale features, lead to a faster decay (given
by e−λt ) of the contribution of their eigenfunction to the heat
kernel. For more detail on the relation between the heat kernel
and manifold geometry, see [20]. The heat trace is a global
descriptor of the manifold, given by

∫
H(x, x, t) d x .

1.4 Transfer of the method to images

So far, we have explained how the spectrum of the Laplacian
was used as a feature descriptor for manifolds. In order to use
a similar method for image fingerprinting, one may attempt
different strategies. Ideally in such an approach, properties of
the Laplacian spectrum which make it useful as a descriptor
for shapes and surfaces carry over to the setting of image data.
We will represent images of width w and height h as con-
tinuous functions g : Ω → C , where Ω := [0, w] × [0, h]
is the rectangle containing the image and C is the space of
colours (simply R in the case of grey scale images).

One approach was to convert a grey scale image into a
two-dimensional manifold and then to apply the shape-DNA
concept to the resulting shape [24]: The image of the func-
tion m : [0, w] × [0, h] → R

3, m(x, y) = (x, y, g(x, y))

is then a two-dimensional manifold embedded into three-
dimensional space. After equipping its boundary with, e.g.
Neumann boundary conditions, the eigenvalue problem for
the Laplace–Beltrami operator on that manifold can be stated
and yields a discrete spectrum of eigenvalues as its solution.
A historical overview explaining how and where Laplace–
Beltrami spectra have been used to identify shapes and
images is given in [30].

When viewed in parameter space, the Laplace–Beltrami
operator appears formally similar to the Euclidean Laplacian
with extra factors. The effect of these factors is that they make
the local behaviour of the differential operator depend on
local image data. This is how data from the image can have
an influence on the resulting eigenvalue spectrum. However,

several other choices for modification terms inserted into the
Laplacian will also do this and may yield a fingerprinting
algorithm that is better in some respect.

One particular way to modify the Laplacian was pre-
sented in [23]. There, the differential operator has the form
− 1

ρ(g(x,y))
�, where ρ : R → R

+ is a function that maps
colours to so-called mass densities. The background is
that this differential operator describes the propagation of
transversal waves in an elastic medium of varying density.
This density is controlled locally by the colour of the input
image and affects the local conditions of wave propaga-
tion, thereby influencing the possible frequencies of global
stationary waves. The squares of these frequencies are the
eigenvalues. A very similar approach was used in [33] in the
context of curve matching with the intention of enhancing
an eigenvalue-based curve descriptor by including greyvalue
data from the interior of the curve in the calculation. These
two applications of modified Laplacian spectra use a linear
mapping from colour to mass density and do not attempt to
modify, e.g. the elasticity of the membrane. While this is the
most straightforward way to achieve some effect of image
data on eigenvalues, it was not clear how (or if at all) this
effect is related in a meaningful way to local features of the
data.

2 General considerations

There is another, on first sight quite different idea how images
can be related to shapes: the Laplacian spectrum is not only
a viable fingerprint for curved manifolds, but also for flat
shapes, that is, compact submanifolds of R

2 equipped with
boundary conditions. When using the Laplacian spectrum as
a fingerprint for comparison of flat shapes, the interior of the
shape is irrelevant: the only sources of information repre-
sented in the spectrum are the boundary of the shape and the
boundary conditions imposed thereon. Now, let us assume
that from an image we have obtained a segmentation, that is,
a collection of flat shapes whose union is the image domain
and whose pairwise intersection is at most one-dimensional.
These shapes are supposed to represent visible features in
the image in a meaningful way, i.e. a visible edge in the
input image should likely lead to a shape boundary in the
segmentation. If we solve the Laplacian eigenvalue prob-
lem with the solution eigenfunctions constrained e.g. to be
zero along the shapes’ boundaries, we obtain a spectrum-
fingerprint that contains information about all of the shapes.
Actually, the total spectrum will be the multiset-union of the
Laplace-spectra of all the shapes regarded separately. This
means that, for example, the presence of a square shape in
the collection of shapes will manifest itself in the spectrum
as a subset of eigenvalues which are common multiples of
the sums of two square numbers, since that is the analytical
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expression for the Laplacian eigenvalues on a square. This
approach, as presented, seems not very viable due to some
undesirable properties:

– It is not clear how to obtain the segmentation.
– The segmentation procedure will need to make a discrete

decision for each image point, thus losing continuous
dependence of the fingerprint on the input image.

– Image features that fall below the given segmentation
threshold will be ignored completely, having no eventual
effect on the fingerprint.

– The solutions of the eigenvalue problem belonging to dif-
ferent shapes are independent, regardless of whether they
are adjacent and if so, whether the separation between
them resulted from a pronounced gradient in the input
image or from an image feature that barely was above
the segmentation threshold.

Nevertheless, this line of thinking points in a promising
direction, because the spectrum is not simply a global fea-
ture descriptor, but retains information about the individual
shapes in the image.

Now, we will give some general considerations on how we
can treat subareas in the input image as shapes, so that the
approximate spectral signature of the shapes can be found in
the global fingerprint, while avoiding a discrete segmentation
step. We will not yet present a concrete example and also not
go into rigorous mathematical detail; instead, we wish to
present the aspects that have to be taken into account when
designing a distance function based on our general approach.

In order to avoid the segmentation step, it is necessary
that the eigenvalue problems of the individual shapes are not
completely decoupled. Also the decoupling should decrease
as the distinction between the shapes in the original image
becomes more blurred, allowing for a seamless transition
from sharp boundary and weak coupling to absent boundary
and full coupling. For simplicity, we will assume that edge
sharpness is reliably detected by the grey-value gradient.

It will turn out that after doing the transition from all-or-
nothing segmentation to gradual boundaries, the total spec-
trum can at least for weak coupling still be regarded approx-
imately as the union of the spectra of the individual shapes,
with distortions of the subspectra depending on the coupling
between the subshapes. The stronger the coupling between
some shapes is (due to low gradient or long common bound-
ary), the more their spectra meld into a single descriptor that
depends on all the information within them, but does not
allow for ascription of eigenvalues to individual shapes.

Although the idealized situation of completely decoupled
Laplacian eigenvalue problems on crisply segmented sub-
shapes is impractical for fingerprinting, we find that it pro-
vides a good starting point for thinking about the behaviour
of the more fuzzy segmentations we prefer. Therefore, in

the following descriptions, we will often mentally make the
transition from the former setting to the latter. In terms of
the operators, discretized to become matrices, this transition
corresponds to the introduction of matrix entries that couple
previously independent sets of basis directions.

2.1 Physical motivation

The descriptions of dynamics of physical processes such as
wave propagation, heat conduction and movement of quan-
tum particles all involve some linear differential operator
based on the Laplacian. If this operator can be separated into a
time part and a space part, finding the eigenvalues and eigen-
vectors of the space part gives the fundamental solution to the
whole problem. This gives a direct correspondence between
the dynamics of physical systems and the eigendecomposi-
tion of the operator that describes it. If a physical system is
composed of non-interacting subsystems, the operator can be
broken into parts that can be diagonalized independently for
each subsystem. In a similar setting, where the walls between
the subsystems are softened and weak interaction is possible,
one might expect that the eigendecomposition is still approx-
imately the same as if there were no interaction, because the
dynamics within one subsystem is only slightly disturbed by
the presence of the others. This is indeed true for eigenval-
ues, but not always for the eigenfunctions; more on that will
follow in Sect. 2.5.

2.2 Softening the boundaries

What we need is something like a softened boundary con-
dition. One way to turn hard constraints into softer ones,
applicable to optimization problems, is to replace a constraint
that prohibits an unwanted property of the solution by an
additional cost term that penalizes the unwanted property.
The softness of the constraint with respect to other aspects
of the goal function can then be regulated by a factor before
the penalization term. Regarding eigenvalue problems, it is
indeed possible to rephrase them as optimization problems
by means of the Rayleigh quotient, as explained below. The
challenge is then how to incorporate the penalty terms for
the softened constraints into the linear operator, so that the
optimization problem remains an eigenvalue problem.

The generalized eigenvalue problem for a linear operator
B−1 A is stated in Dirac notation [7] as

A |vi 〉 = λi B |vi 〉 ,

where |vi 〉 in Dirac notation is the same as the eigenvector
vi , both A and B are self-adjoint and B is positive definite.
Multiplying both sides from the left by the transposed eigen-
vector, in Dirac notation 〈vi | := v

†
i , and isolating λi , we

obtain
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λi = 〈vi |A|vi 〉
〈vi |B|vi 〉 .

The expression on the right is called a Rayleigh quotient, and
choosing a vector v1 under the constraint ∀i : |vi | = 1 so that
the Rayleigh quotient is minimized yields a first eigenvector
v1 and the first eigenvalue λ1. Subsequent eigenpairs (λi , vi )

can be found by minimizing the Rayleigh quotient under the
additional constraint that for all indices j < i , it is true that
〈vi |B|vi 〉 = 0, so that the eigenvectors have to be orthogonal
with respect to the inner product induced by B.

Using the Rayleigh quotient allows us to reason about
the behaviour of eigenfunctions intuitively. Consider, for
example, the Laplacian modified by a mass density term:
B−1 A = − 1

ρ
�, where A = − div grad , B = ρ. The

Rayleigh quotient in this case is

〈v|(− div grad )|v〉
〈v|ρ|v〉 .

Provided there are Neumann or Dirichlet boundary condi-
tions on the domain Ω , we can assume that the adjoint of
div is (− grad ), so we can write the quotient as

〈grad v|grad v〉
〈v|ρ|v〉

or, spelled out as an integral,
∫
Ω

|(grad v)(x)|2 d x
∫
Ω

ρ|v(x)|2 d x
.

From this expression, one can easily read off some properties
of the eigenfunctions: a property that increases the numer-
ator will be suppressed, while a property that increases the
denominator will be enhanced in the solution to the opti-
mization problem. For example, high gradients are avoided
because they increase the numerator. High absolute values
will increase the denominator, but can only be attained uni-
formly if there are neither boundary conditions enforcing
low values near the boundary, nor are there constraints of
orthogonality to a previously computed eigenvector. Also,
high absolute values increase the denominator more if they
occur in regions where ρ is also large. In those regions, the
eigenfunction will tend to have a smaller absolute value (and
correspondingly smaller gradient), because then the contri-
butions by the gradient to the numerator can be smaller while
the contributions to the denominator can stay of roughly the
same size. A region of very high ρ will, therefore, cause the
eigenfunctions to attain small absolute values within itself
(and, due to the small-gradient-constraint from the numera-
tor, also next to it). On the outside of that region, eigenfunc-
tions will behave similarly to a situation where the boundary
of that region has a Dirichlet boundary condition.

The preceding paragraph sought to illustrate what we call a
soft Dirichlet-like boundary condition: if a Rayleigh quotient

can be made to decrease by choosing small absolute values
for v along or near a curve in the domain, that curve is said to
impose a soft Dirichlet-like boundary condition. Conversely,
if a Rayleigh quotient for an operator under consideration
can be decreased as a result of grad v being small in the
direction perpendicular to a curve in the domain, the curve
has a soft Neumann-like boundary condition. In the limit
case where the Rayleigh quotient cannot attain its minimum
as long as v �= 0 somewhere along the curve, the bound-
ary condition is no longer soft and becomes a real Dirichlet
boundary condition, and similarly so for Neumann boundary
conditions.

2.3 Quantifying localization of eigenfunctions

One major concept we need for our approach is that of the
localization of eigenfunctions. The idea is that the eigen-
functions are somehow more present at certain places than
at others. To formalize this, we associate to each function
v a localization density L(v), which is a function defined
on the domain Ω . Then L(v)(x) tells up to a scaling factor
“how much” of v is present at the point x . The degree of
localization of v inside a subdomain A ⊂ Ω we define as
∫

A L(v)(x) d x
∫
Ω

L(v)(x) d x
.

A few formal requirements we propose for a localization
density function L are

– L(v) must be defined on all Ω , with the possible excep-
tions of measure zero sets, as these do not really matter
for the integrals used here.

– L(v) must be non-negative everywhere.
– L(v) must be integrable.
– The concept of colocalization introduced below also

requires square-integrability.
–

∫
Ω

L(v)(x) d x must be positive.
– L(v) should depend locally and quadratically on v. That

is, L(v)(x) is the result of applying a scalar valued
quadratic function QL,x to a vector w containing the
value and some (arbitrary order) derivatives of v at x . The
definition of QL,x depends on L and x , and QL,x (w)

should depend quadratically on the magnitude of w:
∀c ∈ R : QL,x (cw) = c2 Q(w). The rationale for this
requirement is that we think that a function of w captures
the intuition of “how much is happening with v at x”,
while making the dependence quadratical is a reasonable
restriction that still allows for smoothness and the direct
definition of L as a quadratic form, which is an important
special case.

To be meaningful for our application, a localization den-
sity function should also fulfill other criteria which are not
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easily formalizable as those will depend on the differential
operator that we use to find the eigenfunction v. Essentially,
L(v)(x) should answer the question “how sensitive is the
eigenvalue belonging to v to perturbations of the differen-
tial operator in a small neighbourhood of x”: The more an
eigenfunction is present at x , the greater the impact of a
locally restricted change of the operator (which in our setting
is derived from the input image) will be. Note that Rayleigh
quotients of differential operators basically are quotients of
integrals where the integrands are locally applied quadratic
forms of v and its derivatives. Also changes to the quadratic
forms in these integrands have an impact on the eigenvalue,
but the strength will depend on the magnitude of the involved
derivatives of v: If, e.g. the quadratic form uses only first
derivatives, but the order of magnitude of grad v is ε near
x , then changing the coefficients of the quadratic form near
x can effect only a change proportional to ε2 to the over-
all integral, and so the influence on the eigenvalue, which
is determined through minimization of the Rayleigh quo-
tient, is also limited. Therefore, we argue that the integrands
appearing in the Rayleigh quotient of an operator are a good
starting point for meaningful localization density functions
to be used with that operator.

Localization densities of eigenfunctions also allow us to
capture some information that is lost when the spectra of sub-
shapes get merged: from an eigenvalue alone one cannot tell
where it came from. Neither can we tell for a pair of eigen-
values whether they belong to she same subshape or not.
Localization densities can be used to compute a single num-
ber answering the latter question without the need to store
entire localization density measures. For this, we calculate
the overlap, or colocalization, of the localization densities of
eigenfunctions v and w, which we denote by ColocL(v,w)

and define by the expression
∫
Ω

L(v)(x) · L(w)(x) d x
√∫

Ω (L(v)(x))2 d x ·
√∫

Ω (L(w)(x))2 d x
.

A colocalization close to 1 means that v is strongly localized
wherever w is and vice versa. This happens usually when
v and w are localized on the same subshape, although cer-
tain near-degenerate situations, as described in Sect. 2.5, can
cause this too. Note that ColocL(v,w) is the cosine of the
angle between L(v) and L(w), interpreted as vectors in a
Hilbert space. Therefore, cos−1 ◦ ColocL gives a metric on
the functions on Ω .

Augmenting the spectrum with a matrix that for each
pair of eigenvalues tells the colocalization of the corre-
sponding eigenfunction, we obtain a fingerprint that includes
most of the missing information about eigenvalue origin.
This colocalization matrix can also be plotted as a graph
where nodes correspond to eigenfunctions and are aligned
so that pairs of eigenfunctions with high colocalization are

represented closely together. This graph should then dis-
play clusters of nodes corresponding to shapes in the input
image.

2.4 Effect of interacting regions on eigenvalues

Coming from the idealized situation where the domain is
clearly partitioned into subregions whose eigenvalues can
be determined independently, we wish to understand what
happens to the eigenvalues if the boundaries between the
regions are softened. In particular, we want to find out in how
far semantic information (in the form of the Laplace-spectra
of the shapes) is preserved when the boundary conditions are
no longer strictly enforced. A discretization of the differential
operator for the idealized situation can be written as a block
diagonal matrix M0 having one block per independent region.
The softening of boundaries takes the form of adding a matrix
M1 to M0 that has nonzero entries outside the block structure
of M0, thereby coupling the previously separate eigenvalue
problems of the blocks. The appropriate tool for investigating
this situation is the perturbation theory for linear operators
(see, e.g. [14]) which we now briefly review.

Let M0 and M1 be self-adjoint linear operators on the
same vector space, and let (λi , vi ) be the N-indexed family of
eigenpairs of M0. Then, for values of ε within a certain radius
of convergence, one can express the eigenvalues λ′

i (ε) of the
perturbed operator M0 + εM1 as a Taylor series of the form
λ′

i (ε) = ε0λ
(0)
i +ε1λ

(1)
i +· · · . The M0-eigenvalue λ

(0)
i := λi

is shifted to become the corresponding eigenvalue of the per-
turbed operator by corrections of increasingly higher order in
ε. Similarly, the eigenvectors of the perturbed operator can
be expressed as linear combinations of the complete basis
formed by the M0-eigenvectors:

v′
i =

∑

j

v j

(
ε0c(0)

i j + ε1c(1)
i j + · · ·

)
,

with c(0)
i j = δi j and c(k)

i j being the k-th order correction to the
coefficient of the vector v j in the linear combination of the
vector v′

i .
To get a good approximation of how the spectrum of M0

is perturbed by the addition of εM1 to become the spectrum
of M0 + εM1, it is often sufficient to consider only the first
few orders of approximation. The results for λ(1), λ(2) and
c(1) are given below:

– λ
(1)
i = ∑

j,k=1 v j i · (M1) jk · vik = 〈vi |M1|vi 〉.
If M1 is represented in the basis of the eigenvectors of
M0 as a Matrix M ′

1, the coefficient for the first order
shift of the i-th eigenvalue is the i-th diagonal element of
M ′

1. This means that the eigenvalue shift for λi does not
depend on the unperturbed eigenvalues, but only on M1

and one eigenfunction vi .
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– λ
(2)
i = ∑

j �=i
|〈v j |M1|vi 〉|2

λi −λ j
.

The second-order shift of the i-th eigenvalue depends on
all other eigenpairs, but the contributions of those eigen-
pairs can be considered separately, and the contribution
of a single eigenpair (λ j , v j ) is inversely proportional
to the difference of the eigenvalues. Also, if M1 is a
pure differential operator acting only locally, the numer-
ator |〈v j |M1|vi 〉|2 will be neglectable if the localization
areas of the eigenfunctions do not overlap significantly.
Thus only those eigenpairs perturb each other notice-
ably where localization areas overlap and eigenvalues
are closely together (relative to the overlap, as quantified
by |〈v j |M1|vi 〉|2).

– c(1)
i j = 〈v j |M1|vi 〉

λi −λ j
(but c(1)

i i = 0).
The first order linear combination coefficients are also
inversely proportional to eigenvalue difference, and they
also increase with the overlap of the eigenfunctions. Thus
we can reason that up to first order in ε, it is usually pos-
sible to approximate the perturbed eigenvector v′

i using
only vi and a few other eigenvectors that have overlap
with vi (as quantified by 〈v j |M1|vi 〉) and belong to eigen-
values near λi .

2.5 Role of symmetry

The approach to perturbation theory presented above breaks
down if eigenvalues are degenerate. In the context of our
application, degenerate eigenvalues typically arise as a con-
sequence of symmetries, such as one of the regions having
an internal symmetry, or two regions being symmetric under
exchange, i.e. having the same shape.

Let M0 be a self-adjoint linear operator on a vector space
V and let λ be an n-fold degenerate eigenvalue of M0.
The eigenspace W = span {vi+1, . . . , vi+n} belonging to
this eigenvalue is spanned by a basis of n Eigenvectors
vi+ j , j ∈ {1, . . . , n}, but the choice of this basis is ambigu-
ous. Upon adding an infinitesimal perturbation εM1 that does
not have this kind of symmetry, the ambiguity breaks down.
The resulting unambiguous eigenvectors are still infinites-
imally close to W and deviate from that only in second
order of ε. The Taylor series that tell how eigenvectors and
eigenvalues of M0 + εM1 arise from those of M0 require a
specific choice for the complete basis of M0-eigenvectors.
Most importantly, this means that for the zeroth order coef-
ficients in the Taylor series for the perturbed eigenvectors it
is no longer valid to assume c(0)

i j = δi j (this would mean
eigenvectors are the same in zeroth order), unless the cho-
sen eigenvector basis of M0 is indeed infinitesimally close
to that of M0 + εM1. The correct choice of basis for apply-
ing perturbation theory would be an eigenbasis of M0 which
is, in first-order approximation, also a set of eigenvectors
of M0 + εM1. Restricted to the subspace W where M0 is

degenerate, those are completely determined by M1 and can
be found by choosing a basis of W so that the projection P
of M1 onto W becomes diagonal in this basis, with P given
by Pjk = 〈vi+ j |M1|vi+k〉. The degenerate eigenvalue of M0

then splits into several eigenvalues of M0+εM1 according to
the first order approximation λ′

i+ j = λ + ε〈vi+ j |M1|vi+ j 〉.
Since finding the correct basis when given some eigen-

basis of M0 involves an eigenvalue problem and, therefore,
minimization of a Rayleigh quotient, we can expect that the
lowest of the resulting eigenvalues belongs to an eigenvector
that minimizes the Rayleigh quotient of M0+εM1 within W .
The practical consequence for our case would be this: assume
two subshapes S and T that, regarded separately, happen to
have a common eigenvalue λ(S) = λ(T ) with correspond-
ing eigenvectors v(S) resp. v(T ), localized entirely on S resp.
T and with signs chosen so that they mostly align along
the boundary. If this situation is perturbed by weakening the
boundary between S and T , the eigenvalue splits in two and
the eigenvectors need to be combined differently so as to
give the correct eigenbasis. Speaking in terms of zeroth order
approximations, the lower of the two eigenvalues will then
typically belong to an eigenfunction similar to v(S) + v(T )

(symmetric combination), while the higher eigenvalue will
belong to the orthogonal v(S)−v(T ) (antisymmetric combina-
tion). Symmetric combinations give rise to lower eigenvalues
of Laplacian-like operators because they avoid zeros at the
boundary, thereby increasing the absolute values occurring
in the denominator and decreasing the gradients occurring in
the numerator of the Rayleigh quotient. Both the symmetric
and antisymmetric combination will have similar localization
density on either shape: the eigenfunctions are delocalized.
We remark that physical manifestations of this phenomenon
are mechanical resonances and the tunnel effect: if the fre-
quencies resp. energy states of two systems are tuned to each
other, the energy of the vibration resp. the probability ampli-
tude of the quantum particle is present in both.

These consequences of degenerate eigenvalues are also
relevant for the case that two or more eigenvalues of M0 are
not equal, but close. This may be a consequence of an approx-
imate symmetry of the shapes involved, or two shapes may
have a common eigenvalue by coincidence. Nearby eigen-
values can be seen as resulting from a degenerate operator
M−2 by perturbation with an operator εM−1, yielding M0.
Perturbing M0 by εM1 is thus the same as perturbing M−2

by ε(M−1 + M1). The eigenvectors of M−1 and M−1 + M1

will in general be different, so the perturbation by M−1 + M1

will break the symmetry of M−2 differently than M−1 alone
did. A sufficiently strong additional perturbation M1, there-
fore, can cause the eigenvectors of M0 belonging to near-
degenerate eigenvalues to mix in almost equal proportions to
yield the eigenvectors of M0 + εM1. As a result, symmetries
will be broken differently, and eigenfunctions may delocalize
in completely different ways.
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Let F be the function that maps a perturbation of the input
image (represented by εM1) to the eigenvectors of M0 +εM1

and their localization densities. F cannot be defined uniquely
when M0 + εM1 has degenerate eigenvalues. These points
are unlikely to be encountered in practice because the spectra
of matrices with degenerate eigenvalues have measure zero
in the set of all possible spectra of symmetric matrices. How-
ever, since ε can be arbitrarily small in order to effect equally
large differences of the eigenvectors of M0 = M−2 + εM−1

and M0 + εM1 = M−2 + ε(M−1 + M1), the function F
is not Lipschitz continuous in the neighbourhood of those
points where it is not defined uniquely, even if these points
are excluded. The lesson from this is that if we are going
to rely on eigenvectors or localization densities to perform
partial matching, we must be prepared for outliers and will
easily lose Lipschitz continuity of the distance measure.

3 A concrete example

This section presents a specific choice for the differential
operator, as well as a localization density function that can be
derived from its Rayleigh quotient. We have investigated and
are still investigating other possibilities for both of these, but
the formulas proposed here have some interesting properties
and will suffice as an initial example.

3.1 A modified Laplacian

Among the many possibilities of modifying the Laplacian
with additional terms that depend on an input image, we
will present here only one which displays several interesting
properties, both theoretically and in preliminary experiments
we have done to assess its potential for image fingerprinting.
We will simply call it O f , defined by

O f v := −e−2b f div
(

e2b f grad v
)
,

where f is the image grey-value function that parametrizes
the operator. It is derived from the more general operator
−ρ−1 div D grad by setting ρ = D = e2b f , where b is
some positive real constant that regulates the strength of the
decoupling. The Rayleigh quotient for this operator is
∫
Ω

D|(grad v)(x)|2 d x
∫
Ω

ρ|v(x)|2 d x
.

From this formulation, it is unfortunately not really obvious
how the eigenfunctions will behave.

The Operator O f has a nice physical interpretation: the
time-dependent equation

..
v = −O f (v) describes the propa-

gation of an elastic scalar wave through a two-dimensional
membrane with locally varying mass density ρ and stiffness
D, as if the image f had been painted on a drum with a spe-

cial high-density paint. The shape of a stationary vibration on
that drum is then given by an eigenfunction of O f , while its
frequency is the square root of the corresponding eigenvalue.

The Newton–Laplace equation gives c = √
D/ρ for the

speed of sound in homogeneous media. Ignoring physical
units and setting ρ = D means that in all regions where f
is constant, c is 1, regardless of the value of f . For Lapla-
cians restricted to two dimensional shapes S, the eigenval-
ues are distributed on the positive real line with an approxi-
mately constant density that is inversely proportional to the
square root of the area of S and thus inversely proportional
to the length scale of S (Weyl’s law). Since c is also the ratio
between wavelength (proportional to scale) and frequency
of a wave, having constant c means that the eigendecom-
positions for the (in an ideal setting completely separate)
subshapes in an image are computed using the same local
conditions. When the boundaries are softened and the eigen-
values of those shapes are joined into a single spectrum (with
some perturbations), we expect that asymptotically the frac-
tion of eigenvalues contributed by a certain shape is propor-
tional to the area square root of that shape. A consequence for
the resulting fingerprinting algorithm is that shapes of equal
area are represented with similar weight in the fingerprint,
and with many distance measures for spectral fingerprints
this means that their similarities or dissimilarities have simi-
larly strong influence on the distance. This may be desirable
or not: if c was, say, higher for dark regions in the input, then
these would be underrepresented in the fingerprint because
the eigenvalues contributed by them would be less dense
in the overall spectrum. So if emphasis of bright regions is
desired, a different operator than the one with ρ = D should
be used.

The operator O f may also be written as

O f (v) = − div grad v − 2b〈grad f |grad v〉.
This formulation explicitly shows that O is linear in the input
image f . It is also obviously invariant under constant addi-
tive global changes of brightness in the input image. More
importantly, it shows that O f is just the ordinary Lapla-
cian with a term added. Referring back to the considera-
tions about Rayleigh quotients in Sect. 2.2, this term gives
rise to a penalty term in the Rayleigh quotient that imple-
ments softened boundary conditions. However, the modified
Laplacian given here is not manifestly in the required form
of a product of two self adjoint operators. Our description of
Rayleigh quotients is, therefore, not directly applicable and
neither is perturbation theory for self adjoint operators. In
the next subsection, we will give a similarity transform that
yields a self-adjoint operator. What is already evident here is
that the strength of the boundaries can be controlled globally
by b and is locally given by the image gradient. Furthermore
there is some asymmetry regarding the direction of the image
gradient.
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The kind of approximate boundary conditions that arise
for this operator are most evident from the physical interpre-
tation given above: if on one side of the boundary mass den-
sity and stiffness are high compared to the other side, then the
boundary behaves approximately as a free end (Neumann) of
the heavier and stiffer side, and as a fixed end (Dirichlet) to
the lighter and softer side.

3.2 Self-adjoint form

An operator O ′
f similar to O f can be obtained by the sim-

ilarity transform O ′
f = eb f O f e−b f . The two operators are

essentially the same, related by a simple change of basis.
They have the same eigenvalues, and all eigenfunctions are
related by pointwise multiplication with eb f . However, the
operator O ′

f is self-adjoint, whereas O f is not. This allows
us both to apply our reasoning about perturbation theory for
self-adjoint operators and to write the Rayleigh quotient in a
form where the penalty term is explicit.

After some simplification, O ′
f takes the form

O ′
f (v) = −� v +

(
b � f + |b grad f |2

)
· v.

Note that this is no longer linear in the input image. But it
is simpler than O f in that it is the Laplacian, perturbed by
a pointwise multiplication operator.1 The Rayleigh quotient
now becomes
∫
Ω

|grad v(x)|2+(
b(� f )(x)+|b(grad f )(x)|2)|v(x)|2 d x

∫
Ω

|v(x)|2 d x
.

The penalty term in the numerator for each point x is propor-
tional both to the squared amplitude of v at the point x and
to the image-dependent expression

(
b � f + |b grad f |2)

evaluated at x . So relative to the unperturbed Laplacian, high
amplitudes of the eigenfunctions are suppressed (approxi-
mate Dirichlet boundary at edges) wherever the gradient of
the image is large, unless this is cancelled by a negative value
of the image Laplacian. The Laplacian of the input image
measures something like the second derivative of grey-value
perpendicular to an edge (this is exact only for straight edges
with translation invariant grey-value profile). So on that side
of the edge where values are lower, the Laplacian will be pos-
itive, but after the inflection point of the grey-value profile
it will be negative and thus able to (partially) cancel out the
gradient-dependent summand in the penalty term. Without a
value-constraining boundary condition, the first term in the
numerator, stemming from the original Laplacian, tells us
that the gradient magnitude will be subject to minimization
(Neumann boundary). Note that this derivation of the nature

1 This is also the Hamiltonian of the Schrödinger equation for a quan-
tum particle moving in a potential. Motion is described by the Laplacian
and the potential is given by the perturbation term.

of the soft boundaries agrees with the physical analogy given
in the previous subsection.

3.3 Energy localization density

For the localization density we propose the formula

E(v)(x) := λ

∣
∣
∣eb f (x)v(x)

∣
∣
∣
2 +

∣
∣
∣eb f (x)(grad v)(x)

∣
∣
∣
2

to calculate the localization density measure of an eigen-
function v of O f belonging to the eigenvalue λ. For the
sake of completeness, non-eigenfunctions should also be
given a localization density and using the eigenvalue does
not meet the formal requirements given in Sect. 2.3 any-
way. We can do so by making λ a function that supplies
fake “local eigenvalues” calculated according to λ(x) =
−

(
e−2b f div e2b f grad v

)
(x)

v(x)
, which is constant for eigenfunc-

tions.
This localization density has a straightforward physical

explanation in terms of the energy distribution in a vibrat-
ing membrane: the density of kinetic energy of a membrane
with mass density ρ and speed s is 1

2ρs2. Recalling that the
frequency of a stationary wave (whose form is an eigenfunc-
tion) is proportional to the squared eigenvalue, it is easy to
see that at those instants in time where the membrane is flat
and moving fastest because the z-coordinates of all points flip
sign, s2 is equal to λv(x)2. So the first term in the definition
of E(v)(x) is just twice the maximum kinetic energy density.
On the other hand, there are moments when the membrane’s
speed is zero and its elongation is maximal. All the energy
is then stored in the tension. According to Hooke’s law, this

energy density is given by 1
2

∣
∣
∣
√

D grad v

∣
∣
∣
2
, where D is the

stiffness constant. In the membrane vibrating in an eigen-
mode, the energy periodically changes shape between these
two distributions. Both potential and kinetic energy den-
sity are indicative of localization. However, kinetic energy
will always be zero at the zeros of the eigenfunction, while
potential energy density will always be zero at the stationary
points (e.g. maxima and saddle points). Due to conservation
of energy, the total kinetic energy equals the total potential
energy, so adding these two will give a good balance and can
be interpreted as time-averaged energy density, as demon-
strated in Fig. 1.

Referring back to our remarks about localization densities
and Rayleigh quotients, we want to point out that the potential
and kinetic part of the energy density can indeed also be
constructed from the Rayleigh quotient equation

λ =
∫
Ω

D|(grad v)(x)|2 d x
∫
Ω

ρ|v(x)|2 d x

by multiplying both sides with the denominator, so that we
obtain on the left (twice) the total kinetic energy and on the
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Fig. 1 Kinetic, potential and time-averaged energy density, calculated
for one of the eigenfunctions of the image from Fig. 3b. Note how the
kinetic and potential energy complement each other so that their sum
looks rather homogeneous

right the total potential energy. Omitting the integral signs
then leads to the corresponding densities.

4 Implementation and results

A numerical testbed for the presented ideas has been imple-
mented in Java. Our program can apply a finite difference
discretization to a wide family of image-dependent operators
to find the eigendecomposition using the SLEPc library [10].
The results in the form of spectra, eigenfunctions, localiza-
tion densities, colocalization graphs and multidimensional
scaling plots of various distance measures applied to several
images can be visualized.

We have used this program to run several experiments,
some of which we describe below.

4.1 Representation of shapes in spectrum

In this experiment, we construct a series of images parame-
trized by t ∈ [0, 1], showing a fuzzy black2 square on a
white3 background. For t = 0, the black square is at the
center, but as t increases it moves downward while rotat-
ing. For each image in this sequence, we diagonalize the
operator O f described above, with ρ = D = 10−3 f and
Neumann boundary conditions on the domain boundary. We
plot the first 49 eigenvalues in dependency of t . The graphs
are coloured according to the localization area of the corre-
sponding eigenfunction as follows:

– The blue colour channel indicates the degree of localiza-
tion inside the black square.

– The red channel represents localization on the lower 40 %
of the white background.

– The green channel, likewise, shows localization on the
upper 40 % of the white background.

– Colours mix additively. For example, yellow means the
eigenfunction is localized in equal parts on both the lower
and upper half of the background.

2 Represented by the value 0.
3 Value 1.

In the plot, several of the predicted behaviours of the spec-
trum can be seen (Fig. 2):

– The closed-form solution of the Laplacian eigenvalue
problem for a square with Neumann boundary conditions
gives eigenvalues proportional to numbers m2+n2, where
m, n ∈ N ∪ {0} and twofold degenerate eigenvalues iff
m �= n. Indeed the blue line segments can be found at or
near heights that are sums of two square numbers on the
chosen scale.

– The blue lines belonging to eigenvalues of eigenfunc-
tions localized on the square stay more or less horizontal,
indicating that the spectrum contains information of the
presence of a square in the input image regardless of its
position or orientation. They are occasionally perturbed if
they are approached or crossed by eigenvalues belonging
to the background. Then a mixing of colours can some-
times be seen which indicates that the eigenfunctions are
delocalized. In the case of eigenvalues crossing past each
other, note that the lines in the plot do not cross. Instead,
they swap colours while they briefly approach each other
in a hyperbola-like form.

– From t � 0.7 on, some of the blue lines start rising. This
is because the black square is starting to leave the image
domain, so that it is effectively no longer a square. Never-
theless as long as it is approximately shaped like a square,
the subspectrum generated by it is approximately that of
a square, especially with regard to the lower eigenvalues.

Fig. 2 See text for explanation
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– The lines that are not blue are mostly either red or green,
indicating a tendency for eigenfunctions to have signifi-
cant localization in only one half of the background. This
is because the square causes a constriction of the white
background shape, which in turn causes a weaker cou-
pling between its subregions. We can regard the upper
and the lower half of the background as separate shapes
to some degree, although there is no separating edge and
coupling among them is stronger then their coupling to
the square.

– Red line segments are rising, while green ones are falling.
This is because the lower half of the background gets
compressed as the square moves downward, while the
upper half expands. The response of the eigenvalues is a
consequence of the fact that the density of eigenvalues in
the spectrum is inversely related to the area of the shape
they belong to.

– Other observations can be made, such as the non-blue
lines starting out as yellow quadruplets at the left, or
the presence of many one-coloured non-blue perturba-
tion hyperbolas at t ≈ 0.8, where the black square is
rotated about 45◦. These phenomena can be traced back
to symmetries present in the image.

4.2 Colocalization clusters

In the previous subsection, we used prior knowledge about
expected localization areas to show that eigenfunctions are
indeed localized there. Now we demonstrate that colocaliza-
tion relationships between eigenfunctions represent informa-
tion about the composition and spatial relationships of sub-
regions.

Colocalization relationships of eigenfunctions will be
visualized as graphs where to each eigenfunction vi corre-
sponds a vertex xi . A 2D-embedding of the graph is calcu-
lated as a solution of

∀i ∈ N, 0 < i ≤ n : 0 =
n∑

j=1

xi − x j∣
∣xi − x j

∣
∣ · (di j − ∣

∣xi − x j
∣
∣) · si j ,

where

di j := max

{
1

100
, (1 − ColocE (vi , v j ))

2
}

is the desired distance of the nodes xi and x j and

si j := (ColocE (vi , v j ) + 0.1)2

√
i · j

is a weight factor that emphasizes eigenfunctions with strong
colocalization and low eigenvalues. Edges between the nodes
are drawn depending on the strength of the colocalization.

Figure 3 shows an image containing a single black shape
on a white background and a graph made from the first n = 76
eigenfunctions, obtained from the operator O f discussed

above with ρ = D = 10−4· f . One can see how clusters
in the colocalization graph correspond to parts of the image.
Remarkably, regions that are not separated by an edge, but are
different subregions of the same shape, are also represented
by subclusters of the two main clusters. Correspondences
between the regions in the graph and regions in the image
have been found manually by inspecting the localization den-
sities associated with the graph nodes. Most eigenfunctions
belong to a semantically relevant subarea of the image, but
there are exceptions, as expected from perturbation theoret-
ical considerations. For example, from the fact that v41 and
v42 are delocalized, have adjacent indices and almost the
same localization density, one correctly assumes that these
two eigenfunctions are according to Sect. 2.5 approximately
a symmetrical and an antisymmetrical superposition of two
eigenfunctions of the Laplacian restricted to the black shape
and the background, respectively.

Setting ρ = D = 10−4· f leads to a relatively strong
decoupling and thus to only few delocalized eigenfunctions.
Increasing the coupling between the shapes will cause the
colocalization clusters to be not so neatly separable, as shown
in Fig. 4. At ρ = D = 10−1· f , the clusters are hardly visually
distinguishable, at least in the two-dimensional embedding.
Nevertheless, the labelled image regions from Fig. 3b can
still be associated with subregions of the graph, as shown in
Fig. 5. Only the nodes corresponding to region F , which is
the smallest in area and therefore worst-represented, are not
clearly grouped together.

It is not easy to see how b should be chosen: if it is
too large and the image is composed of many small areas,
most of which have no high-contrast boundary, there will
be many independent regions, each represented in the fin-
gerprint by too few eigenvalues. But if b is too small,
the distinction between the fewer clearly separated (groups
of) regions is lost in the fingerprint. Since changing b is
equivalent to globally rescaling the intensity values of the
input image, we can instead ask for an image normalization
procedure.

4.3 Multiple shapes and the influence of shape boundaries

When multiple shapes are present, the question arises to what
degree their eigenvalues perturb each other, thereby obscur-
ing the information about each shape’s presence.

As explained in Sect. 2.5, this situation is characterized by
the delocalization of eigenfunctions between shapes and will
occur depending on the closeness of the eigenvalues and the
coupling between the subsystems. With the used operator,
coupling is dependent on the gradient. Therefore, blurred
edges as well as edges with a smaller difference in grey
value should lead to delocalization of more eigenfunctions
across those edges. Sharp edges will lead to more eigenfunc-
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(a)

(b) (c)

Fig. 3 There are also substructures within the expected two main clus-
ters, representing more detailed information about the form of the
regions. The clusters have been identified manually (see also Fig. 5) by
measuring the colocalization with functions localized in the respective
image regions. a The demarcated regions of the graph contain eigen-
functions localized on the associated image regions in b. Region C is
especially clearly distinguishable because of its large area, which leads

to many overlapping eigenfunctions being localized there. b The input
image. Labels have been inserted in order to establish correspondence
of image regions and colocalization clusters in a. c Energy localiza-
tion densities of selected representatives from the encircled clusters in
eigenfunction are given within each image. Here, G is used to label
delocalized eigenfunctions

tions being exclusive to the enclosed area, thus yielding more
eigenvalues that depend only of this area’s form and content.

Figure 7 shows the results of a test involving three types
of boundary. As expected, the sharp high-contrast boundary
around shape A leads to the least amount of delocalization.
Comparing shapes B and C, it seems that the sharpness of
an edge has less effect on delocalization than the contrast.
In this example, the delocalized eigenfunctions of B and C
are also present on the background between these shapes.
While it is theoretically possible that two different non-
neighbouring shapes can interact without much involvement

of other shapes between them, we expect such a resonance
phenomenon to be a rare coincidence because it requires
eigenvalues to be very close.

5 Conclusion and outlook

We have presented a promising approach for image finger-
printing. It transfers known techniques for shape fingerprint-
ing to the setting of images. We have also shown how one
can understand what happens to the information from the
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Fig. 4 Increasingly worse cluster separation with increasing coupling.
The form of the graph appears to change continuously. Even in Fig.
4d, the hardly visible clusters can be found at analogous places, as

demonstrated in Fig. 5. a D = ρ = 10−4· f , b D = ρ = 10−3· f ,
c D = ρ = 10−2· f , d D = ρ = 10−1· f

image and how it is represented in the fingerprint. For this,
we rely mainly on perturbation theory, which to our knowl-
edge has not been used before in the study of fingerprinting
algorithms.

We introduced the concept of localization densities and
colocalizations. These are useful in the description the
phenomenon of (de)localized eigenfunctions. The pairwise
colocalization of eigenfunctions gives us the colocalization
matrix as a new kind of fingerprint that can be used in con-
junction with the spectrum.

We showed a general strategy to construct eigenvalue
problems with “softened boundary conditions” within the
domain, by viewing them as penalty terms in the operator’s
Rayleigh quotient minimization problem.

Figure 8 outlines the algorithm for image comparison. The
step marked by (X) is where the concrete operator os chosen.

From the many possible choices for differential operators to
be used with that approach, we have so far presented and dis-
cussed just one, although we are aware of some others that
have noteworthy properties. A presentation and comparison
of these, as well as a more systematic design process for oper-
ators with desired invariance—or sensibility—properties, is
a topic of further research.

Also in this publication we have focused on how to get
fingerprints from images, but did not go into details of fin-
gerprint comparison. Of course the distance function used
to compare the fingerprints is very important for the over-
all image comparison algorithm. Commonly when defining
a distance functions for spectra, a finite prefix is compared
using an L2 norm, which is sometimes weighted to account
for the fact that higher eigenvalues are more sensitive to noise
(see e.g. [33]). This illustrates that understanding the behav-
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Fig. 5 In spite of the poor
visibility of the cluster structure
when ρ = D = 10−1· f , there is
correspondence to image
regions. The nodes are
highlighted in green according
to their colocalization with a
Gaussian density function which
has its maximum in the
respective image region.
Compare the relative positions
of the encircled subgraphs with
those from Fig. 3a. a Region A,
b region B, c region C , d region
D, e region E , f region F

iour of the eigenfunctions helps to pick the right distance
measure for the fingerprints. In light of this, a wider range
of distance functions should be considered, because insights
gained from perturbation theory indicate that some eigenval-
ues may be out of place and are better not compared against
the eigenvalue with the same index in the other spectrum. As
this text is mostly about fingerprinting, we only mention that

we have so far experimented with simple edit distances on
words over R.

As the next step, we intend to extend our work to colour
images, or more generally images valued in arbitrary feature
vectors, such as texture information. A preprocessing step to
deal with textures is in order in any case, as the colour gra-
dients occurring in textures should not be regarded as edges.
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(a) (b)

Fig. 7 Two colocalization graphs were plotted based on Fig. 6, using a
different number of eigenfunctions. The operator and localization den-
sity function have ρ = D = 10−3· f . Labels indicating the main regions
of the graph and their association with image parts have been added.
a Only eigenfunctions belonging to C are notably delocalized. (since

the smallest eigenvalue is always 0, its eigenfunction should not be
counted). b Another graph, this time using more eigenfunctions. Sev-
eral of the higher eigenfunctions are localized on both the blurred shape
and the grey shape, as well as on parts of the background. Shape A has
only some spurious delocalized eigenfunctions

Fig. 6 Input image for the colocalization graphs in Fig. 7: Two black
shapes (A and B) and one grey shape (C) on a white background. One
Black shape (B) has a blurred boundary

This preprocessing step could also perform the normaliza-
tion mentioned in Section. 4.2, for example by enforcing a
fixed relationship between contrast and scale, allowing high
gradients only on larger areas.

Another topic of research is the exploitation of co-
localization relationships between eigenfunctions. Here, the
possibility to perform partial matching by means of match-
ing the colocalization matrices deserves special mention. But

Fig. 8 Diagram illustrating the steps of the image comparison algo-
rithm at various levels of abstraction

even without this ambitious goal in mind, we expect that
using colocalization information will greatly enhance the dis-
criminating power of the fingerprints.

We have noticed work that seems to point in a similar
direction in the related field of shape processing [2,11]. Due
to the formulation of our technique in terms of differential
geometry, we expect that our approach, although primarily
concerned with planar images, is to some degree compatible
with these and can be transferred to the setting of surfaces
painted with, e.g. texture or curvature information.

So far, our method is mostly in an early basic research
stage, although we keep in mind practical applicability.
Besides the research topics mentioned above, developing a
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readily usable application from it would require a detailed
investigation of parameter space and a performance compar-
ison with existing methods that are based on entirely different
approaches but perform similar tasks of image comparison,
matching, fingerprinting or retrieval.

As an interesting side product, we found a way to obtain
smooth functions that adapt to the contours of an image,
namely the eigenfunctions and their localization densities.
They seem for the most part to be robust to small perturba-
tions like holes in a separating edge. We plan to integrate
them into the probabilistic segmentation framework of [6].
In addition to general benefits, we expect that they will help
to prevent the segment contour from leaking out of a not
entirely closed shape. Besides that, we assume that there are
other applications for such functions.
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