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Fast Inverse Forging Simulation via Medial Axis Transform

A geometric approach towards backwards forming simulation.
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Objective

In hot-metal drop-forging, the quality of the final product is
highly dependent on the design of the forging dies and the lay-
out of the process. Computer-aided techniques are used to re-
duce design time and to decrease the number of iterations until
the final layout is reached. To that end, simulations are de-
veloped from equations of general plasticity theory, then Finite
Element Analysis (FEA) is employed to find a solution to the
so derived partial differential equations. FEA is used to verify
the die designs that were accomplished by using empirical rela-
tionships or based on engineering practice. For complex parts,
several steps are needed to deform the initial simple shape to
the end shape with optimal properties and within a geomet-
rical tolerance. Conventional simulation starts with the non-
deformed part and result in the final shape, while the engineer
has the specifications of the final product and wants to derive
the preform. These procedures are obviously opposed.

We propose a geometric approach for a direct inverse simula-
tion, based on the work of Mathieu et al. [2] which will help the
engineer in laying out the process.

An alternative inverse simulation

As an alternative to FEM simulations, Mathieu et al. proposed
an approach based on experimental observation and elemen-
tary plasticity theory [2]. In drop forging experiments, Mathieu
noticed that the material flow followed specific paths. These
paths are an application of the Medial Axis concept.

Cut through forging die with velocity field and Medial Axis of
the die cavity with two maximal balls.

Definition 1 (Medial Axis Transformation). Let S be a solid in
. The Medial Axis M of 5 is defined as the closure of centers
of maximal n-balls in 5. The radius function r . Mg — R
assigns the radius of the corresponding maximal ball to every
point in Mg.

Definition 2 (Maximal Ball). An n-dimensional ball B., — S
with center ¢ € R"™ and radius r is called moximal in S if there
exists no other ball 3. . < S that contains ...

2D-Algorithm

Input to the algorithm is the geometry of the tool, which is
given by a point sample of a planar axial cut through the die
surface. We assume that the material exhibits rigid-perfectly
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plastic behavior. We use a standard Cartesian coordinate sys-
tem with orthogonal axes x. y, z. The deformed volume has a
constant thickness in z direction that is cancelled out in the
equations, and the cut will be in the &. y plane. Furthermore,
we describe the material by its flow curve together with a con-
stant working temperature ¢+ and a constant friction coefficient
i1. Finally we require the maximum speed of deformation ¢may
during the process.

The first step is the approximation of the Medial Axis via the
Voronoi diagram of the point set, that produces a connected
tree of Voronoi edges and vertices. The die area is partitioned,

so that each edge ¢ of the tree corresponds to a cell C';
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Then, we determine the points where the border of the material,
l.e., the material front, cuts the medial axis. At these points,
which we call end points, material will be removed to fill the
volume which will be freed when the dies move. The volume
movement depends on resistance along the displacement paths,
therefore we compute a forming resistance for each cell of the
partition, based on the following consideration.

Since we are only interested in the final shape of the deformed
material and neglect the influence of temperature and deforma-
tion history on the process, it is sufficient to look at the move-
ment of the object’s boundary.

Forming Resistance

To compute the forming resistance of the cell C', correspond-
ing to the edge £ := vy — v;; between vertices v and v, with
footpoints f and f, in distances r; and r|. We substitute it by
a simple element as shown in figure 3. We define the height
of the substituted element to be h := v + ', so that €' has the
same area as the quadrangle vy, vy. f1, fo. This yields

r = ryCos(Z(E, (fo—w)))|E
+ | fo — fil cos(ZL((fo — fi). (v1 — fi)) |v1 — fil

and an equivalent expression for 7. The width will then be
[ = |E|. Using a result from elementary plasticity theory, we
describe the local deformation resistance of the cell as
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Since the friction coefficient y is given, the only unknown is the
yield stress k¢ that can be determined by a simplified Hensel-
Spittel law
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Here, - is a material constant, ;... .. my are the so called re-

gression coefficients, ¢ is the degree of deformation and ¢ the

current deformation speed. The regression coefficients can be
taken from tables or simulation programs such as FORGE and
the deformation speed is limited by the user-specified maxi-
MUM ¢max. That leaves the computation of the local maximum
deformation degree ¢y Of each cell. Since the deformation
will always be positive in the height and negative in the width
of the cell, the deformation degree in the height is the maxi-
mal. When the movement vector of the die surface is sp, and
it forms an angle « with the vector f, — f,, then the change of
height dh will be
dh = spsin{a).

h+ spsin(a)
¢max—|”( f; [ )

With this result from [1], we can compute the forming resis-
tance of each cell.

This yields

Resistance along displacement paths

Since we assume that material will be transported along the MA,
we still have to determine the volume ratios that are moved
along the different branches. We postulate that the material
will always move along the path of |least resistance. Therefore,
the total deformation resistance is added up along each branch
of the MA and the displaced volume is distributed accordingly.
To avoid multiple summation, the tree structure of the MA can
be used to implement a backtracking algorithm, allowing fast
computation of resistances for every vertex.

Finally, the distribution of material volume will be calculated
iteratively over the cells, depending on the determined resis-
tances and a prescribed rate of transport, e.g., 5% of the vol-
ume per time-step. The latter rate is a heuristic, where further
research could probably provide more transparent parameters.

Outlook

The 2D algorithm can be lifted to 3D. Approximation of the MA
by filtered Voronoi-diagrams is a robust and fast method for the
geometric computation that is working well in 3D. The compu-
tation can be sped up by detecting the parts of the MA that
don't have to be recalculated. These are obviously the points
which have footpoints on the same die part and whose associ-
ated medial ball does not intersect other die parts.

The geometric forming resistance also has a counterpart in 3D
based on cells of the Voronoi diagram, so that a graph-based
approach like in 2D will be implemented.
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