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A B S T R A C T

This thesis was developed within the framework of the EU MultiScale-
Human Project [15], whose central aim lies on improving the current un-
derstanding of physiological human articulation with the application of
supporting the diagnosis and treatment of musculoskeletal diseases. To-
wards this goal, this work contributes several novel methods in order to
improve the visualization and processing of biomedical data. It especially
addresses scientists whose workflow involves potentially massive amount
of biomedical information.

A complete study of the characteristics of the human body involves mul-
tiple spatial scales and correspondingly data sets from different acquisition
modalities. The analysis of a specific feature is typically performed within
one scale, with a particular data set being subjected to the expertise of a
narrowly focused specialist. An interplay across spatial scales is beneficial
for a complete analysis of biological phenomena as it connects the afore-
mentioned information distributed over the multiple scales. However, this
interplay is difficult since different spatial dimensions, levels of abstraction
and other data properties require different visualizations. Thus, biomedical
data sets are still commonly analyzed using isolated visualization systems
that are established to address only a specific scale and domain of expertise.
Current multimodal frameworks, which attempt to explore the complete
range of acquisition modalities, are typically insufficient to aid scientists,
as for instance small scale features are not distinguishable in large scale
views, and semantic means are not provided to visually understand internal
relations between data sets. Consequently, the presentation and exploration
of this plethora of information is currently not feasible.

In order to overcome the aforementioned limitations in the current state
of the art, this work contributes concepts for multi-scale visualization,
particularly providing:

• A 3D multilayered environment and a combination of scientific and
information visualization (SciVis and InfoVis), in which global and
detailed information from multi-scale biomedical data can be pre-
sented and explored, overcoming the limitation of using one group
of visualization methods to represent multi-scale biomedical informa-
tion [150, 192].

• An incorporation of semantics into the visualization applied in a
multi-scale scenario, which allows the obtaining of visual parameters
and other semantic information from the biomedical data for the
creation and enrichment of the multi-scale visualization [35].

• Enhanced intra-scale visualizations, improving the presentation and
analysis of data within the considered scale in order to support the
clinical workflow. In this context, this thesis presents concepts for
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the analysis of kinematical data of human joint articulation at the
behavioral scale [151, 153].

The above concepts have been incorporated in a multi-scale visualiza-
tion environment which allows for the presentation of a complete set of
multi-scale data with different visualization properties in a single view. It
particularly provides an integrated detailed and overall view of the relevant
data sets as well as tools for visually navigating through them.

The proposed multi-scale visualization environment has the potential
to amplify the understanding of biomedical processes in the human body.
This has been exemplarily confirmed in an application scenario focusing
on the investigation of knee joint kinematics based on experimental data
collected in collaboration with LBB-MHH, the latter being a project partner
within the MultiScaleHuman Project [151, 153]. It was demonstrated, that
the developed processing methods relying on Lie group theory and the
corresponding visualization techniques allow for an intuitive interpretation
of helical axes and their geometrical relation with respect to the knee joint
anatomy, an efficient differentiation among several cases and states of knee
joint, and a flexible exploration of the discussed data sets and of related
data, thereby supporting the clinical workflow during the analysis of the
knee joint articulation.

While several key aspects of above contributions have been firstly pub-
lished by the author in the indicated works and have shown promising
results in applications to biomedical data sets provided by the MultiScale-
Human consortium, this thesis expands upon those results and presents
an in-depth discussion and a unified framework for the exploration of
multi-scale biomedical data, satisfying the requests for efforts found in
recent literature.
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I N H A LT S V E R Z E I C H N I S

Diese Arbeit wurde im Rahmen des EU-MultiScaleHuman Projekts entwi-
ckelt [15], dessen zentrales Ziel die Verbesserung des aktuellen Verständ-
nisses der physiologischen menschlichen Gelenke ist, um bei der Diagno-
se und Behandlung von Muskel-Skelett-Krankheiten zu unterstützen. Zu
diesem Thema werden mehrere neuartige Methoden aufgezeigt, um die
Visualisierung und Verarbeitung von biomedizinischen Daten zu verbessern.
Diese Arbeit richtet sich vor allem Wissenschaftler, deren Workflow poten-
ziell enorme Menge von biomedizinischen Informationen umfasst.

Eine vollständige Untersuchung der Eigenschaften des menschlichen
Körpers beinhaltet multiple räumliche Skalen und entsprechende Daten-
sätze aus verschiedenen Akquisitionsmodalitäten. Die Analyse einer be-
stimmten Funktion wird in der Regel innerhalb einer Skala durchgeführt,
wobei ein bestimmter Datensatz der Expertise eines Fachmanns ausge-
setzt ist. Das Zusammenspiel verschiedener Bereiche der Wissenschaft
auf räumlichen Skalen wäre von Vorteil für eine vollständige Analyse
biologischer Phänomene. Dies ist jedoch schwierig, da die Datensätze un-
terschiedliche räumliche Dimensionen, Abstraktionsebenen und andere
Dateneigenschaften aufweisen und somit unterschiedliche Visualisierungen
erfordern. Folglich werden biomedizinische Datensätze häufig in isolierten
Visualisierungen durch unterschiedliche Fachgebiete analysiert, denen nur
ein bestimmtes Maß an Expertise zur Verfügung steht. Gegenwärtige mul-
timodale Visualisierungsrahmen sind demzufolge unzureichend, um Wis-
senschaftler zu unterstützen, da beispielweise Merkmale aus kleinen Skalen
in Übersichten mit großem Maßstab nicht zur Verfügung stehen und außer-
dem keine semantischen Zeichen angeboten werden, um die internen
Beziehungen zwischen Datensätzen visuell zu verstehen. Somit ist die
Präsentation und Erforschung dieser Fülle an Informationen in einer einzi-
gen Ansicht derzeit nicht realisierbar.

Um die oben genannten Einschränkungen, die aus dem aktuellen For-
schungsstand hervorgehen, zu überwinden, präsentiert diese Arbeit ver-
schiedene Konzepte für multiskale Visualisierungen:

• Eine 3D-Mehrschichtumgebung und die Kombination von wissenschaft-
licher Visualisierung (Scientific Visualization, SciVis) und Informa-
tionsvisualisierung (Information Visualization, InfoVis), mit denen de-
taillierte und globale Informationen von den biomedizinischen Daten
dargestellt und untersucht werden können. So wird die Beschränkung
auf eine dieser Visualisierungsmethoden überwunden, um biomedi-
zinische Informationen in unterschiedlichen Abstraktionsebenen darzu-
stellen [150, 192].

• Eine in einem multiskalen Szenario angewandte semantisch unter-
stützte Visualisierung, die den Erhalt der visuellen Parameter und
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anderer semantischer Informationen der biomedizinischen Daten er-
möglicht, um eine bereicherte Multiskalen-Navigation zu kreieren [35].

• Erweiterte intra-skala Visualisierungen, die die Darstellung und Ana-
lyse von biomedizinischen Daten auf einzelnen Skalen verbessern,
um den Arbeitsablauf von Fachgebietsspezialisten zu unterstützen. In
diesem Zusammenhang präsentiert die vorliegende Arbeit Konzepte
für die Verhaltensskala, die sich auf die Analyse von kinematischen
Daten der menschlichen Gelenke konzentrieren [151, 153].

Die oben genannten Konzepte wurden in eine multiskale Visualisie-
rungsumgebung eingebaut, die die Präsentation eines kompletten Satzes
von Multiskalendaten mit unterschiedlichen Visualisierungseigenschaften
in einer einzigen Ansicht ermöglicht. Insbesondere bietet die Visualisie-
rungsumgebung den Fachgebietsspezialisten sowohl eine detaillierte als
auch eine Gesamtübersicht über alle relevanten Datensätze zu bekommen
und zudem die Mittel, um visuell durch sie zu navigieren.

Die vorgeschlagene multiskale Visualisierungsumgebung hat das Poten-
zial, das Verständnis für biomedizinische Vorgänge im menschlichen Kör-
per zu vertiefen. Dies wurde in einem Anwendungsszenario exemplarisch
bestätigt, das sich auf die Untersuchung der Kniegelenkkinematik konzen-
triert. Das Szenario basiert auf der Grundlage experimentell gesammelter
Daten, die in Zusammenarbeit mit der LBB-MHH, einem Projektpartner in-
nerhalb des MultiScaleHuman Projekts, erfasst wurden [151, 153]. Es wurde
gezeigt, dass die entwickelten Verarbeitungsverfahren, die auf die Lie Grup-
pentheorie und die entsprechenden Visualisierungstechniken aufbauen,
eine intuitive Interpretation von Drehachsen und ihren geometrischen
Beziehungen in Bezug auf die Anatomie des Kniegelenks, eine effiziente
Differenzierung zwischen verschiedenen Zuständen des Kniegelenks und
eine flexible Erforschung der diskutierten Datensätze und der zugehörigen
Daten ermöglichen, wodurch die klinischen Arbeitsabläufe bei der Analyse
des Kniegelenks unterstützt werden können.

Während mehrere Schwerpunkte der oben genannten Beiträge bereits
vom Autor in den angegebenen Werken publiziert wurden und vielver-
sprechende Ergebnisse in Anwendungen mit biomedizinischen Daten, die
von dem MultiScaleHuman Konsortium zur Verfügung gestellt wurden,
gezeigt haben, erweitert die vorliegende Dissertation diese Ergebnisse und
präsentiert eine eingehende Diskussion und einen Rahmen für die Er-
forschung von multiskalen biomedizinischen Daten, um die in der aktuellen
Literatur genannten Aufforderungen zufriedenzustellen.
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1
I N T R O D U C T I O N

“Rendering beautiful images is nice but usually not the first-
hand task.”[155]

“Visualization research will have to become more interested
in neighboring, related fields of research, [. . . ] for focus+context
visualization and the visualization of multi-dimensional data
[. . . ], and for user-centered visualization.”[101]

Musculoskeletal diseases are common disorders that affect the human
body’s motion. The study of them becomes very important, as they are fre-
quent causes of physical disability and different pathologies that currently
affect around 100 million people in Europe, and yet are undiagnosed in
over 40% of the population [30].

Generally, the study of biological processes in the human body involves
interactions of information relating diverse spatial scales. Musculoskeletal
pathologies, such as osteoarthritis [88], are an example where changes at
the molecular scale lead to variations in larger scales (e.g. cellular, organ),
which finally cause alterations to biomechanical function at behavioral
scale. Therefore, a complete study for such kind of phenomena requires
the merging of data from measurements throughout several domains of
science. However, these domains, such as tissue engineering, radiology and
biomechanics, investigate independently very different spatial scales, at
cellular, organic and behavioral scales, respectively.

Current visualizations lack on facilitating scientists tasks for the integra-
tion of the aforementioned plethora of biomedical information, its presen-
tation and exploration. Current scientists’ workflows make use of isolated
visualization systems, which allow only the exploration of features involv-
ing a concrete data type, but not the integration of biological data from all
the scales in a single picture. Visualization methods that generate images
from the measurements should constitute a means to help scientists to
understand the relations across evidences existing in the biomedical data:
"how can visualization help in extracting information from several scales
that otherwise is not easily reachable nor understood?" [152]. The main
problem is based on the fact that these data have not only different spatial
dimensions, but also different levels of abstraction, and consequently, di-
verse visualization properties, requiring innovative strategies for supporting
the extraction of valuable knowledge.

This work presents processing methods and visualization techniques for
the improvement of the visualization of multi-scale biomedical data, making
use of knee joint articulation data as application scenario. This approach
proposes a scientist-centered integrated visualization for the analysis of
multidisciplinary biomedical data, based on the following contributions:
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• Novel multi-scale visualization: Musculoskeletal diseases are consti-
tuted by hierarchical processes which occur simultaneously at dif-
ferent spatial scales of the body. Events measured on cellular scales
propagate upwards to the tissue and organic scales creating interde-
pendency between evidences at different scales. Multi-scale visualiza-
tion aims at the coupling data coming from different spatial scales
for a simultaneous presentation [145]. However, current multi-scale
biomedical visualizations are insufficient for a complete understand-
ing of phenomena, as small scale data do not have visibility in large
scale views and visual means to indicate interdependencies between
data are not provided. In this work, a novel multi-scale visualization
by means of a 3D multilayered environment is proposed, in which de-
tailed and global data of different scales as well as their relationships
can be presented and explored.

• Combination of scientific visualization and information visualiza-
tion techniques: The presentation of relevant biomedical data sets
for the exploration of musculoskeletal diseases remains limited if
choosing methods belonging to only one of the two main subfields
of visualization research: either scientific (SciVis [56]) or information
(InfoVis [59]) visualization. In this work, this traditional division in
the field is overcome in the visualization environment in order to
facilitate a complete analysis of all the biomedical data. The multi-
scale medical data is presented by making use of both subfields for
a complete analysis: InfoVis methods as cognitive amplification (e.g.
representations of graphs for gait patterns, properties of meniscus),
and SciVis methods for realistic representations coming from physical
data (e.g. computed tomography, magnetic resonance imaging).

• Incorporation of semantics into the visualization applied in a multi-
scale scenario: The presentation of multi-scale biomedical data in one
single view would overwhelm the specialist without if exploring
without visual semantic means to understand the context and the re-
lations of the data. Knowledge formalization can organize biomedical
data sets into semantically connected pieces of information. In this
work, semantic visualization is applied in a multi-scale scenario to
support a meaningful presentation and navigation across the data
sets of multi-scale nature. This approach provides semantic means to
identify relevant items for its presentation to the specialist user of the
visualization environment. This includes the use of profiles to adapt
the visualization content to the scientist’s needs and the enrichment
of the visualization with semantic relations among the data sets.

• Enhanced intra-scale visualizations: New processing methods and
visualization techniques are required in order to accurately charac-
terize and interpret data on concrete spatial scales. Those methods
allow to improve the workflow of the specialists who are experts in
those data, as well as to contribute to the overall study of processes
of multi-scale nature. In this work, efforts have been made at the
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behavioral scale for the visualization and analysis of the knee joint
functional articulation based on helical axis method. Previous tools
based on this method [218] were insufficient for clinical practice since
they were lacking in terms of robust analysis capabilities and intuitive
visualizations. This work describes how the use of sophisticated and
advanced mathematical concepts of Lie group, Lie algebra and the
respective exponential map in the context of rigid body motions leads
to intra-scale visualizations which improve the clinical workflow in
biomedical engineering for the analysis of kinematical data of the
knee joint articulation. In this context, the overall multi-scale visu-
alization environment constitutes a framework in which intra-scale
developments improve the understanding of the encompassed data,
facilitating the study of processes of multi-scale nature.

The growth of new medical appliances and diagnostic techniques requires
new ways of working within an interdisciplinary team which encompasses
clinical knowledge and technical know-how [29]. In this context, visualiza-
tion that renders images from all those measurements must aim to help
scientists understanding complex relations between data at diverse spatial
scales. A multi-scale framework, resulting from a multidisciplinary concep-
tion among scientists from the involved disciplines and visualization re-
searchers tends to gain a deeper understanding of multi-scale diseases [32].

This work has been performed under the framework of the EU Marie
Curie ITN MultiScaleHuman Project [15]. The aim of the project has been
the creation of a multi-scale biological data visualization and knowledge
management system for improved understanding, diagnosis and treatment
of musculoskeletal diseases in the physiological human articulation.

structure

First, Chapter 2 describes the basic principles and the related work re-
garding the exploration of multi-scale medical data, as well and their
shortcomings. Subsequently, Chapter 3 presents the proposed methodol-
ogy and its contribution with respect to the described state of art. Chapter 4

specifies the design and the development of the multi-scale visualization
environment for multi-scale biomedical data. Chapter 5 describes an ap-
plication scenario, focusing on the development of enhanced intra-scale
visualizations and the use of the multi-scale visualization environment for
the analysis of the knee joint functional articulation. Along these chapters,
the approaches of this work listed above are described in detail including
diagrams and examples. Finally, Chapter 6 summarizes the conclusions
and directions for future work.





2
B A S I C P R I N C I P L E S A N D R E L AT E D W O R K

Vision is the human sense that provides the quickest and widest chan-
nel for interpreting information. In the biomedical fields visualization is
indeed the primary channel through which biomedical data is communi-
cated. Visualization enables biomedical researchers to observe computations
from physical measurements of their experiments and simulations. As the
ultimate goal, visualization can facilitate researchers the exploration of bio-
logical processes, supporting the foundation of new theories or fundamental
truths.

Nowadays, the need for handling huge amounts of information from
several sources of data is becoming increasingly important for biomedical
scientists. Traditionally, imaging techniques had various modalities which
measured different physical effects from the same object and shared di-
mensions and resolution. A complete analysis required the combination
of such sources of data coming from different modalities, e.g. computed
tomography (CT) and magnetic resonance imaging (MRI). Currently, there
exist an increasing number of complex use cases in biomedical science and
clinical diagnostics that require not only the combination of sources from
different modalities, but also data from various domains of expertise that
are related with a different spatiotemporal scale. In this context, multi-scale
visualization can help physicians and scientists to explore and understand
all this plethora of data.

Section 2.1 summarizes the foundation of visualization, describing its
purpose and the classification of the extensive number of methods. Multi-
scale visualization is presented in Sec. 2.2, illustrated with techniques to
perform such kind of visualization and applications. Section 2.3 discusses
the visualization of biomedical data, its complexity, the need for a multi-
scale environment and describes several works in this direction. Section 2.4
reviews current lines of work proposed in the literature for the design
of visualization for scientists. User interaction plays an important role in
the visualization tools, as visualization combined with and controlled by
user interaction constitute the two inherent components in any tool for
biomedical data exploration. Therefore, in Sec. 2.5 a short summary of the
foundation of the Human Computer Interaction (HCI) and an overview
of related work on user interaction are given. Another important aspect
is the organization of all the multi-scale biological information, which
requires methods for managing all this knowledge. Notions of knowledge
formalization and ontology are given in Sec. 2.6. Finally, the shortcomings
of the state of art to take into consideration for this work are described in
Sec. 2.7.
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2.1 visualization

Visualization is the visual representation of a domain using graphics in order
to obtain understanding from a process. What initially started only in the
human mind, nowadays takes advantage of computers for supporting this
cognitive process. Visualization allows not only to get answers from concrete
questions, but most important: to explore the unknown. Visualization tools
allow their users (in the present work: scientists) to get "insight" from these
processes.

In this section, primary concepts about visualization are described. First,
definitions of visualization highlight the process of understanding as the
essential aim of the user employing a visualization tool. Second, the vi-
sualization pipeline describes the process required to move from a real
measurement or simulation to reach the human cognition in order to get
that understanding. Finally, the field visualization consists of a huge family
of methods and algorithms, which are categorized in two major subfields:
information and scientific visualization.

2.1.1 Definition

Visualization can generally be defined as a graphical representation of
data or concepts, whose aim is to provide insight into aspects related to a
phenomenon we are interested in [210]. As a very primary definition, visu-
alization constitutes a cognitive process performed by humans in forming
a mental image of a domain space. In the last decades, due to the birth of
information science and the growth in computational technologies being
combined, this meaning was widened. The definition was extended from
only an internal construct of the mind to also an external artifact which sup-
ports this cognitive process happening in the human mind [238]. Nowadays,
it is widely accepted that visualization is "the use of a computer for com-
prehending data or to extract knowledge from the results of simulations,
computations or measurements" [142].

The process of understanding a phenomenon does not happen entirely
in the brain of individuals, requiring also the interaction with other entities,
such as cognitive tools [235]. In this context, visualization constitutes a
very important cognitive tool which facilitates the attainment of insight
from a phenomenon, as it translates a phenomenon into the language of
human vision and cognition [180]. Vision is indeed the human sense which
provides the quickest and widest channel to interpret information, as the
eye and the visual cortex of the brain provide the highest bandwith channel
into human cognitive centers [235]. An individual working with a visual
tool is depicted in Fig. 2.1. The interface between them is provided by
visualization as the primary channel to acquire information. Visualization
and understanding are closely related: this coupling depends on the quality
of this interface. And the result of this coupling constitutes a new and more
powerful cognitive system.
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Figure 2.1: Coupling between a visualization tool and an individual.

Note that interaction constitutes a fundamental auxiliary channel for
visualization, as it is the way to control its flow. The exploration of a phe-
nomenon is indeed facilitated by using interfaces in which the perceiver
can not only observe some graphical representation of the phenomenon
but also interact with it. Interaction is effective when the feedback channel
decides in real-time the contents that are going to be presented, and there-
fore supporting the perceiver to satisfy his concrete enquiries during the
exploration. Therefore, the decisional input of the perceiver-user supported
by interactive visualization is crucial.

Visualization helps to provide answers to quantitative or qualitative
questions regarding phenomena [210]. In case of quantitative questions
(e.g. "given a gait analysis of a patient, what are the values of knee joint
angles during stance phase?") visual representations help to understand the
data, facilitating the exploration of small-scale features of data. Fine-tuned
visualizations pursues to answer those questions, in which the process to
get understanding follows a bottom-up pattern, i.e. after satisfying precise
questions it is possible to generalize and understand or establish theories.

In other situations, the questions are qualitative (e.g. "given a CT scan
of a patient knee, are there any diseases?") or simply there exist no prior
questions to the observation. In those cases, visual representations have
the important role to support a user interested in examining a process
in order to explore novel facts and establish relationships. Open-ended
visualizations or exploratory visualizations contribute to this aim, which
the process to get insight follows a top-down pattern.

This last role of visualization matches the perspective of a scientist inter-
ested in examining a process in order to obtain new scientific insight and
support new scientific discoveries, such as the exploration of relations of bi-
ological processes by a medical practicioner. Visualization helps scientists to
go beyond precise questions, allowing them to comprehend huge amounts
of data, understand features at large-scale, and even perceive emergent pat-
terns and properties not previously anticipated, which facilitates hyphotesis
formulation (Fig. 2.2).

2.1.2 Visualization process

The visualization process (or visualization pipeline) consists of a group
of operations which manipulate the acquired data from a phenomenon,
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Figure 2.2: Classification of visualization tools according to the insight they pro-
vide.

obtained by measurements of a real process or by computational simulations.
The human mind (of the user of the visualization tool) is the receiver in
this chain, which gets insight into the original phenomenon [210, 235]. The
operations involved are (Fig. 2.3):

• Data acquisition encompasses the collection of the input data from the
measuring device or simulations, the conversion of the raw data to a
chosen specific data set format, and its storage, e.g. in a CT scan of
the body, physical measurements of CT scan devices are processed
and finally stored in the file format DICOM [28].

• Data filtering involves the methods applied to the acquired data in
order to extract relevant information to target research questions, e.g.
a subset of interest for radiologists from a CT scan, such as the knee
joint bones. This operation is crucial for the visualization, as it is
necessary to preserve only information of interest.

• Mapping specifies the visual attributes which encode the filtered data,
converting the (until now invisible) data into a (visible) data set in a
visual domain. This visual domain has dimensions which are visual
features, such as color or position. For instance, the mapping of a
CT scan to a visual representation is usually made by a volumetric
visualization (see Sec. 2.1.3.1). Mapping constitutes the core operation
in the visualization process and its effectiveness determines the quality
of the visualization.

• Rendering creates the final image from the mapped data with visual
attributes and several viewing parameters tuned by the user. In the
pipeline, its aim is to specify remaining visual attributes that users can
tune to examine the scene. Rendering simulates the physical process
of lighting a visible 3D scene according to the viewpoint as well as
settings of the user, ultimately being visible in the generated image
[173].

• Human perceptual and cognitive processing are exploited by the user of
the visualization tool, who uses the rendered image and the advan-
tages of the human visual and cognitive systems to get understanding
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Figure 2.3: Visualization process.

of the phenomenon. Note that the introduction of the user in the visu-
alization process makes possible that both viewer and visualization
tool can be considered a single information-processing system [180].

Regarding the last operation, some authors [215, 235] have highlighted
the importance of considering perception factors in visualization research.
In order to maximize the overall coupling among the phenomenon and its
understanding (Fig. 2.1), the study of the human visual system reveals that
there exists a best way to transform the data into something that people
understand for optimal decision making. A wide number of guidelines for
the design of visualization regarding perception factors have been proposed
[235].

2.1.3 Classification of visualization methods

There is an extensive number of visualization methods and algorithms used
in visualization applications. Many algorithms, techniques, and interactions
have been explored and improved since the growth in visualization of
scientific data in the late 1980’s. Visualization methods have since been
traditionally categorized into two major areas which became the main
subfields of visualization: scientific and information visualization.

2.1.3.1 Scientific visualization

Scientific visualization [56] (SciVis) aims to present data that are inherently
spatial in a visual form. It typically aims to represent data based on physical
measurements. For instance, CT-imaging evaluates the respective physical
measurements of electromagnetic waves (using sophisticated mathematical
computations) in order to finally present an appropriate visualization of the
respective spatial data, e.g. volumetric visualization of knee joint segments.

The main fields of application of scientific visualization are biomedicine,
engineering, mathematics and Earth sciences.

One widely extended classification of the visualization algorithms is
based on the type of attribute of the data they operate on [98]:
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• Scalar visualization operates on scalar data, taking basically as an input
one or two-dimensional scalar data sets. For instance, color mapping
designates a color as a function of the scalar value, e.g. medical
visualization with luminance (Fig. 2.4a). Contouring presents all points
that have a given scalar value, e.g. a isobar map. Two concrete types
of scalar data have an own group of methods:

– Image visualization operates on image data, i.e. scalars sampled
on uniform 2-dimensional grids. Image processing constitutes
a huge field (per se an own field) and is present in scientific
visualization systems [199], contributing in several operations of
the visualization pipeline for complex representations.

– Volume visualization targets three-dimensional scalar fields sam-
pled on uniform grids. In biomedicine, huge amount of data
can be acquired by modalities that generate volumetric data sets,
e.g. CT, MRI, PET (Positron Emission Tomography). The main
idea of volume rendering is the creation of an image in which
the value of each pixel depends on a transfer function. This
transfer function indicates (according to some criteria) the scalar
value corresponding to a 3D data set along a ray parallel to the
viewing direction [210]. Different transfer functions categorize
different techniques [81], such as volume ray casting (Fig. 2.4c)
or texture-based volume rendering.

a) b) c)

Figure 2.4: Examples of SciVis techniques: (a) scalar visualization of the sagit-
tal view of CT of knee joint, (b) vector field representation of fiber
arrangements (source [67]) and (c) volume ray casting of head MRI
(source [81]).

• Vector visualization operates on vector data. A first group encompasses
the visualization of the short-term motion of the points in the vector
field. Vector glyph mapping relates the properties of a vector icon (such
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as direction and size) with each sample vector of the data set. Note
that the visual properties used for encoding the motion have different
impact in its perception [51]. Vector color coding maps different colors to
different directions of each sample vector of the data set. Displacement
plot allows to visualize a vector field by deforming a surface along its
normal. A second group is constituted by stream objects (streamlines,
streamtubes), which describe the trajectory of some input object in
a vector field over a larger interval (Fig. 2.4b). Finally, texture-based
vector visualization employs a texture signal that encodes the direction
and magnitude of the vector field.

• Tensor visualization operates on tensor data. This data are usually visu-
alized with one of the aforementioned techniques, after the reduction
of such information to one scalar or vector field by employing Princi-
pal Component Analysis (PCA) procedures [68]. This visualization is
an active area in medical visualization, as Diffussion Tensor Imaging
(DTI) techniques are employed to quantify the diffussion of water in
living tissues [177].

A major part of SciVis is actually involved with visualizing data obtained
from computational simulations of physical processes. This applies with
different degrees of abstraction in many fields of engineering including
computational fluid dynamics, gas dynamics and electrical engineering
where scientists visualize dynamical systems modeling relevant aspects of
the respective physical processes. The latter computational simulations are
applied as well for modeling important aspects of biomedical processes such
as heartbeat and nerve impulse [94, 239]. It is expected that in the future
those computational simulations will strongly go in their importance. This
holds because physical experiments are often cumbersome and difficult.
Therefore with the aim to reduce the latter effort needed for studies in
engineering or for analyzing biomedical processes scientists are trying
to replace physical experiments by simulating computations and their
resulting visualizations (e.g. Fig. 2.10). It should be noted that in the overall
context of the aforementioned topic morphology and biomedical processes
are intimately related because biomedical structures depend on physical
shapes and their changes. This issue has been studied in the area of science
called mathematical morphology [195], which analyzes mathematical laws
that control changes of shapes and have biological impacts.

Realistic representations provided by the subfield of SciVis improve the
visual experience [152]. Enhancing the quality of rendering is an ongoing
research subject in SciVis [233, 244]. Medical images are visualized together
with the representation of different structures by using simultaneously
several techniques. For instance, texture based volume rendering can be
used to give the user an overall impression of the measured data, while
surface rendering can be a method of providing extra-information for
structures of interest (Fig. 2.5).

SciVis also presents challenges in representing biological data gathered
on a nanoscale level. The data often have a large size and do not have a
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Figure 2.5: Segment visualization in the open software for visualization, segmenta-
tion and analysis of volume data YaDiV [82], showing intracranial air
after brain surgery (source [152]).

naturally understandable representation as in the previous case. Therefore,
visualization of these nanostructures has to create interpretations of the
measurements. A set of different techniques, such as volume rendering,
isocontouring and dynamic mesh reduction are used for visualizing and
navigating these data-intensive structures [42].

2.1.3.2 Information visualization

Information visualization [133] (InfoVis) constitutes the subfield of visual-
ization applied to abstract quantities and relations in order to get insight in
the data [65]. Examples of Infovis data are found everywhere in the infor-
mation society, such as computer file systems, databases or stock exchange
courses. Such data are frequently called abstract data, as this information
has not an innate visual form [210]. InfoVis helps users to create a mental
image about data which have not a given spatial representation, e.g. by
means of trees or graphs.

InfoVis purposely provides a spatial representation to data that are not
inherently of spatial origin, reinforcing the human cognition. Only after
a transformation into a spatial presentation is it possible to gain benefit
from this data as cognitive amplification i.e. facilitating the comparison, the
pattern recognition or the change detection.

The selection of the spatial representation of the data is performed during
the operation of mapping in the visualization process (c.f. Fig. 2.3). Note
that this selection is not necessary in SciVis, as the spatial representation
is a priori given, and this actually resembles the mental image the user
already has (e.g. Fig. 2.5). In addition, InfoVis has to target generally a large
audience with generally limited mathematical knowledge, therefore the
design has to follow the conventions accepted by the field of application.
There are numerous applications of InfoVis in a large range of sectors, such
as information technology, telecommunications, banking and logistics.

The most important visualization methods of InfoVis are [120, 210]:

• Data visualization represents quantitative data with or without axes in
a schematic forms. Some of the diagrams used are basic, e.g. table, pie
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chart, bar chart, and scatter plot. Chord diagram (Fig. 2.6a) is a radial
technique for visually exploring pairwise relations in categorical data
[161]. The design of such kind of visualizations depends on the data
properties and the performed processing based on the purpose of the
visualization, i.e. by determining its editorial focus and persuasive
power [121, 170].

• Multivariate data visualization focuses on data which present three
or more variables or attributes, in which methods indicated in the
previous heading are not enough. There is an extensive number of
techniques for multivariate data visualization techniques [134, 62],
parallel coordinates being the most representative [115](Fig. 2.6b). In
this technique, each data point is represented as a set of connected
points along different vertical axes, each representing a variable. Latest
works on the topic aim to improve the discernibility of patterns in the
representation of large data sets, e.g. [178].

• Tree visualization encompasses specific relational data, i.e. data whose
information is located not in the data value, but in the association of
such data values. Specifically, tree visualization focuses on relational
data which have a unique relation among two items. Formally, a tree
is defined as a set of nodes and edges. Several main visualization
methods exist for its representation:

– Node-link visualization maps the tree nodes to glyphs, and the
edges to lines that connect the related nodes. The position of
the glyphs and their appearance are parameters to be defined
depending on the application. Radial, bubble and cone-tree are
some examples.

– Treemap constitutes a method in order to display the tree struc-
tures in the form of nested rectangles [196]. Every rectangle
represents a subtree, which is partitioned into smaller rectangles
which represents its children (see Fig. 2.25a). Color and size of
the rectangles are attributes to define.

The aforementioned visualization methods can be combined in
order to amplify cognition regarding relational data. For instance,
both node-link and treemap views are used for the description of
sequential patterns of human motion [113]. While the node-link
view facilitates the temporal representation of pose sequences,
the treemap allows a more intuitive encoding of motion pattern
frequencies by employing the size of nested rectangles.

• Graph visualization focuses on relational data which may have more
than one relation among two items. In contrast to trees, loops are
allowed in the graphs. Hierarchical graph visualization is similar to the
node-link visualization, drawing the nodes and edges with the same
kind of constraints as the trees. Non-hierarchical graph visualization
can employ force-directed algohrithms in order to create a lay-out
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according to several aesthethic criteria, e.g. uniform edge length,
uniform vertex distribution (Fig. 2.6c). There are other visualizations
methods in concrete applications:

– Semantic network is a graphical representation of semantic rela-
tions between concepts. It also uses a graph consisting of nodes
and edges, representing concepts and semantic relations, respec-
tively, being often used as a representation of knowledge (see
Sec. 2.6.2).

– Flow chart is a symbolic representation of steps involved in a
process, e.g. clinical processes. Basic 2D shapes and arrows rep-
resent concepts such as process, alternative process, decision or
connector.

a)

b) c)

Figure 2.6: Examples of InfoVis techniques: a) chord diagram for the control of
hospital outbreaks, representing close encounters among the different
groups in a pediatric ward (source [31]), b) parallel coordinates visual-
ization analyzing aspects of several counties in a country (source [120]),
c) hierarchical graph visualization of social networks employing the
tool Gephi [46].
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– Data flow diagram (DFD) describes the transformation of infor-
mation by a system, e.g. the exchange of data in a medical store
management system. Basic 2D shapes and arrows represent con-
cepts as process, input, output, file or database.

Graph visualization can highlight several aspects from the relational
data, such as the grouping of nodes, their attributes, the graph spa-
tialization or its temporal evolution. A classification of graph visual-
izations based on these categories can be found in [95].

• Text visualization encompasses visualization methods for analysis of
text documents, including: abstraction and representation of statistics
of a high number of documents, parallel analysis between two docu-
ments, and retrieval and categorization in single documents. These
methods allow the meaningful interpretation of narrative texts in
digital humanities [114] and the analysis of source code in software
engineering [72].

Without making the traditional distinction between SciVis and InfoVis
described above, visualization can be defined as any technique for creating
images in order to represent phenomena. In fact, several authors have
begun to recognize that conventional definitions of SciVis and InfoVis
are mistaken as delimiting the utilization of techniques from the other
subfield [182, 183, 149] (Fig. 2.7). This criticism can be proven due to the
proposal of new classifications. An example is a new classification scheme of
visualization algorithms called A-space [96], in which there is no reference
to the mentioned distinction: new visualizations are considered a blend
of algorithms and are placed in this space. Another example is a new
taxonomy proposed based on characteristics of data models rather than on
data features [214]. In addition, some visualization techniques developed
in parallel in the SciVis and InfoVis field start to converge. An example is

Figure 2.7: Proposal of combination of SciVis and InfoVis for the visualization
of the human anatomy (source [149]), as one subfield provides only
limited information. The user introduces queries as text, and SciVis and
InfoVis views are both obtained from the system.
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the F+C technique, which was generalized for both subfields [102]. Another
example of this combination is the visualization of the human anatomical
hierarchy integrated with volume visualization of skeletal substructures
[43].

2.2 multi-scale visualization

Multi-scale visualization aims to couple data coming from different spatio-
temporal scales in a simultaneous presentation. Currently, multi-scale vi-
sualization appears in many fields: cartography, engineering, physics and
medicine. Independent of the field of application all visualizations share
the common need to merge data, which belongs to a range of scales that
exceeds the resolution of the display or the human eye for appropriate
presentation and exploration. In this section, the most relevant multi-scale
techniques required to perform such a visualization are described, as well
as examples of applications in different fields.

2.2.1 Multi-scale techniques

A wide and heteregenous variety of multi-scale techniques are involved in
a multi-scale visualization [145, 146]. Some of them define the interaction
mode, others the mode of magnification of sub-scale data or handle nu-
merical precision problems. Note that these techniques are not exclusive. A
combination according to the purpose of the visualization and the chosen
basic visualization style is required. The most relevant of these techniques
are:

• Click-and-zoom is used when sub-scale data is too small to be resolved
on the display screen and it is therefore marked by a placeholder
token (i.e. labels, landmarks or other symbols). Clicking the mouse on
the placeholder implies the magnification of the target. The variant
look-and-fly allows the user to freely change the direction of zooming if
the mouse cursor is moved during this process from the screen center
to another position [143].

• Click-and-fly is used when the camera position does not provide the
desired view. Clicking the mouse implies the motion of the camera
position through the scene and does not necessarily imply a change
of scale, e.g. the Street view mode of Google Earth [5].

• Call-out is an enlarged sub-region that links to a point of the parent
visualization. This technique appears mainly in static illustrations and
allows simultaneous views of detailed and global content. The call-out
can have several appearances, as the link can be represented by means
of lines, arrows, or geometric figures (Fig. 2.8a).

• Lensing allows an interactive magnification of a region for the observa-
tion of details that cannot be seen with the human eye alone (Fig. 2.8b).
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Similarly to the previous technique, it allows a simultaneous view of
detailed and global content. Magic Lenses constitutes a generalization
of the classic magnification lense, which provides an alternative visual
representation, by means of alteration, supression or enrichment of
the content in the selected region of the scene [213].

Figure 2.8: Examples of multi-scale visualization techniques applied to a histo-
logical image of cartilage: a) call-out technique, b) lensing technique
(source [152]).

• Power scaled coordinates pursue the rescaling of the real space for vi-
sualization in order to integrate objects placed at vast distances that
otherwise would not be visible or would be limited by the numerical
precision of the global coordinate system. This technique utilizes the
substitution of ordinary homogeneous coordinates by logarithmic
scale of homogeneous coordinates, with the fourth coordinate repre-
senting the logarithm of the current scale in the chosen base, therefore
allowing the representation of data in scale independent form. This
technique is widely used in astrophysis [99].

Another similar case is when objects are very small compared to their
distance from the origin of the reference system. In such a case, the
resolution of the objects geometry can be lower than the numerical
precision of the computer. This problem, often called ill-conditioning,
is solved by registering the positions of small objects with respect to
their local parents [146].
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• Level of Detail (LoD): This technique represents an object in a scene
with different grades of complexity depending on its relevance in the
visualization. The relevance of the object can be measured according
to factors such as position, camera speed or user focus. At a concrete
state, data need to be re-rendered, marked by a placeholder or simply
disappear. As data sets grow in size and complexity, the importance
of LoD techniques is also increasing [138].

• Out-of-core visualization: A collection of different approaches allow
to handle data sets that are larger than the available memory for
its visualization. External-memory techniques are grouped into a)
batched computations, involving streaming data into internal memory
and process them in passes, and b) on-line techniques, in which data
are pre-processed according to possible queries and results are stored
in a specific structure that facilitates the access [66].

The design of a multi-scale visualization application consists of choosing
the appropriate aforementioned techniques. The choice of those techniques
depends on the following factors [145, 146]:

• Type of data and visualization techniques used for their representation, e.g.
isosurfaces, volume rendering, vector field, tensor field visualization
(c.f. Sec. 2.1.3).

• Nature of multi-scale: Considerations to be taken into account are based
on the relations between the different types of data, i.e. the order of
magnitude and the relation between scales presented in the data sets.
For instance, the absence of spatial or temporal continuity in the data
sets to visualize requires the use of techniques, such as visual aids
for indicating transitions (e.g. see Sec. 2.4.2) or data fusion for filling
those spatiotemporal gaps (e.g. [76]).

• Style of interaction: The design of the interactions modes (e.g. click-and-
zoom or click-and-fly, previously described in this section) depends
also on the selection of the human computer interaction interfaces for
the application, such as haptic or gesture interaction (see Sec. 2.5).

2.2.2 Applications

Multi-scale visualization is becoming more frequent in many fields of
applications. Independent of the field and the purpose of the visualization,
all applications requires massive data sets that comprise different orders
of magnitude apart in scale. The main fields of applications of multi-scale
visualization [146] are:

• Cartography: The multi-scale visualization used in cartography is based
on the navigation through information through different levels of ter-
rains and meteorological systems [143]. The most well-known example
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Figure 2.9: Cartographic multi-scale 3D navigation based on cubemaps
(source [143]). The automatic sensing of scale allows the user to make a
seamless transition from a 2D cartographic view to 3D street level.

of a multi-scale visualization is Google Earth [5]. While the 2D carto-
graphic view mode provides an approach combining click-and-zoom
and LoD techniques, the Street view mode offers at street level a 3D
visualization with a click-and-fly interaction.

Challenges of navigation in a multi-scale cartographic are described
in McCrae et al. [143], who, for instance, make use of an image-based
environment representation called cubemap. The scene is rendered
with a camera that faces each of the six canonical directions whose
projection planes correspond to the faces of a cube. The application
senses the size of the environment and adjusts the viewing and travel
parameters, preventing the collision with the environment (Fig. 2.9).

Figure 2.10: Visualization of the known universe with the call-out technique, al-
lowing the observation from the solar system to the most distant
super-clusters (source [21]).
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Figure 2.11: Multi-scale modeling of cortical bone tissue (source [160]). Several
length scales are considered for simulating material behavior.

• Astrophysics: Data in astrophysics encompass an enormous range of
spatial data. A single scene could comprise visual objects from sizes
ranging 1025 m down to 10−15m [89]. The main aspect to take into
consideration is to mantain visually the difference of distances among
the different objects. For this purpose, current visualization platforms
in astrophysics use techniques such as call-out (Fig. 2.10) and power
scaled coordinates.

Figure 2.12: 3D model of a synapse (source [237]). After processing the data ac-
quired via stimulated emission depletion (STED) microscopy, this
model represents through super-resolution images a nanomap of
presynaptic nerve terminals describing the localization of around 200

synaptic proteins.
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Figure 2.13: Examples of genomics visualization: The UCSC Genome and Cancer
Genomics Browsers (source [162]) displaying several clinical param-
eters, e.g. on the right side, tumor (olive) versus unaffected (yellow),
and male (yellow) versus female (black) – gray, data unavailable.

• Engineering and physics: Multi-scale modeling [206] refers to the field
of solving physical problems that have important features at multi-
ple (spatial or temporal) scales. Areas as computational analysis of
materials (Fig. 2.11), computational fluid dynamics, computational
combustion and computational mechanichs need the analysis of com-
plex, large-scale, multidimensional data. This visualization uses in
each scale scalar (colormaps), vector or tensor visualization (stream-
lines) (c.f. Sec. 2.1.3.1), depending on the atribute of data they operate
on. Regarding the multi-scale technique, it usually makes use of tech-
niques as call-out or lensing, which allows to simultanenously observe
the calculations at different scales.

• Biomedicine: In the last decades there has been an exponential growth
in the complexity of biomedical data visualization. This difficulty is
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due to the large amounts of data available from a wide variety of
sources. If the purpose of the visualization requires data at different
spatial scales (e.g. from microscopic level, see Fig. 2.12, up to MRI
level), the complexity increases. The visualization of biomedical data
is described separately in Sec. 2.3 due to its importance in this work.

• Genomics: The human genome contains almost 3 billion base pairs,
requiring therefore a huge range of visualization scales. The analysis,
interpretation and manipulation of such data requires visualization
that can handle high-dimensional information, rather than preserving
spatial representations. Thus, genomics is a concrete discipline of
biomedicine that makes use of InfoVis techniques (c.f. Sec. 2.1.3.2)
rather than SciVis ones. This is the reason why its description has been
separated from the next section. There are a lot of tools for comparing
genomes, e.g. Fig. 2.13 [162].

2.3 visualization of biomedical data

The visualization of biomedical data has become more challenging due
to the increasing complexity of the data sets. In order to succeed with a
complete view of a biological phenomenon, it needs to fullfill both the mul-
timodal and multi-scale requirements. Current biomedical multi-scale
visualizations illustrate that no considerable advances in terms of visualiza-
tion have been made in order to exploit multi-scale approaches that could
solve multidisciplinary biomedical problems.

2.3.1 Complexity of visualization of biomedical data

The complexity of data is due to the following factors:

• Variety of sources: Biomedical data can be acquired through a broad
range of modalities, e.g. CT, MRI, motion capturing and microscopy.
Even sources of the same modality might have problems as they
might not share fully a common standard. DICOM [28] is the stan-
dard for storing and transmitting information in medical imaging
from different clinical scanners. However, emerging imaging tech-
niques are sometimes not fully standardized with DICOM; in other
cases, implementation of the standard varies by manufacturers [233].
Another example is microscopic imaging, in which no format has
been adopted as a universal standard, leading to a loss of metadata
during format conversion, or problems by organizing images from
time-lapse experiments [233].

• Large amounts of data: Experiments in every kind of domain provide
complex and large data sets, which are difficult to manage due to the
memory limitations, e.g. microscopy [171]. Even though the amount of
available memory is increasing and out-of-core techniques have been
developed [66], data memory requirements increase due to a more
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detailed data collection. This creates another challenge: representing
data sets in a user intuitive manner is more difficult in correlation to
the increasing amount of data.

• High-dimensional image data: The aforementioned experiments provide
currently a large number of attributes for each physical point, being
possible to represent these attributes in a high-dimensional space.
For instance, multispectral imaging (acquisition of spectrally resolved
information at each pixel of an imaged scene) has become widely
offered by microscopy manufacturers [132]. Visual encoding is re-
quired for the human perception of such data. Therefore, images carry
implicitly more information beside x- and y-resolution.

3D reconstruction and projection techniques are important when dealing
with high-dimensional image data [77]. This can be illustrated in an exam-
ple of tomographic mineralogical data analysis [83]. The software used [82]
allowed the experts from mineralogy to understand the geometric spatial
structure intuitively, which was not observed in the respective 2D slice im-
ages used before. This can certainly be applied in the context of biomedical
multi-scale visualization, where reconstruction of cartilage micro-CT data
clearly exhibits tissue structure (Fig. 2.16c).

2.3.2 Multimodal and multi-scale requirements

A complete visualization of biomedical data requires not only the integra-
tion of all data from different modalities in the same reference system for a
specific domain of knowledge (multimodal requirement), but also to con-
sider the merging of several domains across scales (multi-scale requirement)
as another constraint in the biomedical environment (Fig. 2.14).

The multimodal requirement is born by the variety of data properties:
multiple imaging sources provide vast amounts of data with heterogeneous
dimensionality that should be merged. This requirement is needed to help

scale 1

scale 2

scale 3

sources

high dimension

data

multimodal

mult
i-s

cal
e

Figure 2.14: Multimodal and multi-scale requirements visualizing biomedical data
(source [152]).
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Figure 2.15: Example of propagation of pathologies across diferent spatial scales
(source [152]). Different grades of osteoarthritis disease obtained using
a) microscopic imaging [122], b) MRI imaging [136].

physicians and scientists of the same domain interpret the wide range of
collected data [39].

For example, the extraction of information from both the hard and the
soft tissues, acquired with different imaging modalities (CT and MRI), is
essential in an anatomical study. It can be used to obtain information in
many musculoskeletal clinical applications [80].

Figure 2.16: Example of knee joint multi-scale data set (source [152]): a) cross-
section of knee CT scan, b) micro-CT slice of cartilage tissue, c) 3D
reconstruction of micro-CT scan of cartilage tissue, d) histological im-
age of meniscus, e) schematic of extracellular components of cartilage
tissue, f) visualization of glycine particle.



2.3 visualization of biomedical data 47

Figure 2.17: Example of several scales, domains, devices and data sets involved in
the study of musculoskeletal diseases. Musculoskeletal diseases are a
clear example that need to satisfy both the multimodal and multi-scale
requirements.

On the other hand, the multi-scale requirement, i.e. mixing information
between scales, is needed because systems and pathologies in the human
body are often hierarchical. Cumulative events on the molecular and cellular
scales propagate upwards to the tissue and organ levels (Fig. 2.15). In this
work, these kinds of disease are going be denominated multi-scale pathologies
(alternatively, pathologies of multi-scale nature). In some cases, a complete
evaluation of medical risks can only be obtained if data from different scales
are available [163].

For example, musculoskeletal diseases depend on several factors from
multiple scales (Fig. 2.16). For a complete study, information sources from
different scales and diferent domains of science have to be considered.
Specifically, studies of cartilage [97] have shown the impact of extracellular
matrix (molecular) components on macroscale elements. The degradation
of their nanoscale structure greatly influences the behavior of the tissue.
This causes degeneration with age, injury, or diseases such as osteoarthritis.
Sources of information to be used range from cross-sectional histology at the
cellular level, to body motion captures at the behavior scale, with additional
data on the tissue and organ level in between. This analysis involves experts
from domains ranging from biology to biomechanical engineering (Fig. 2.17).
Recent research projects prove that the integration of multi scale data can
lead to deeper understanding with practical consequences [15, 212, 223].

Another example is the study of the cardiovascular system. A multi-
scale conception of the human blood circulation system, from molecular to
organ level, can enhance the understanding of diseases, such as vascular
atherogenesis [135].
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2.3.3 Biomedical multi-scale visualization

Multi-scale visualization is necessary due to the division of science into do-
mains, each one investigating the nature on a specific spatiotemporal scale
and working with its own type of data. This specialization can even prevent
scientific progress if phenomena are analyzed in strongly separated scales.
This fact is considered the "tyranny of the scales" [163]. The observation and
quantification of natural processes occurring at multiple scales is not pos-
sible without a multi-scale framework, resulting from a multi-disciplinary
conception among scientists and visualization researchers [32].

The main challenge for multi-scale visualization of biomedical data is:
"how to simultaneously display multiple visual features that map to very
different space-time regions?" [116]. Detailed and global content information
are usually distributed at different scale levels, and also small scales should
have visibility in large scales.

Recent projects enable collaborative investigation of the human body
as a single complex system. The development of data fusion and multi-
modal visualization demonstrates that the interplay of domains of science
across spatial scales is beneficial for a complete analysis of a biological
phenomenon. Thus, research groups and current projects highlight this ap-
proach for providing scientists with new knowledge in order to solve their
challenges, e.g. projects under the framework of the Virtual Physiological
Human (VPH) [22, 32].

The Multi-scale Spatiotemporal Visualisation (MSV) Project [14] is a VPH
project which aims to cover the lack of specific interactive visualization for
biomedical multi-scale data, proposing the use of placeholders as means of
interaction for changing the LoD [212]. In the example of the visualization
depicted in Fig. 2.18, this way of interaction allows the navigation across
CT scans at different scales.

Figure 2.18: Multimodal fusion of different scales of CT data of femur, based
on placeholder tokens, which indicate the location of data at differ-
ent scales (source [222]): (a) CT data and micro-CT token without
transparency; (b) CT data and micro-CT token with transparency; (c)
micro-CT data and nano-CT token with transparency.

Another example is the Multimod Application Framework (MAF) [223],
which supports the combination of biomedical time-varying data from sev-
eral sources, allowing for instance the analysis of human motion (Fig. 2.19)
[130].
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Figure 2.19: Multimodal visualization of clinical gait analysis in the assessment of
total knee replacement (source [130]). This screenshot depicts original
video sequence collected in the motion analysis laboratory, (top-right)
frontal, (bottom-left) sagittal and (bottom-right) transverse plane views
of the bony segment poses after 3D reconstruction by spatial registra-
tion.

This project and others use open-source systems and libraries for image
processing and visualization for rapid development of medical imaging
applications, such as the Visualization Tool Kit (VTK) [23]. VTK is an open-
source toolkit written in C++ that supports a wide variety of visualization
methods, including scalar, vector, tensor and volumetric ones. Open-source
libraries constitute the basis of many advanced tools and are suitable for a
rapid development of a multi-scale environment [58].

Biodigital Human [1] and Zygote Body [27] are examples of web visualiza-
tions for a general audience, allowing exploring models of body organs
using a navigation widget and different level of transparencies. However,
data are not multi-scale, as it is possible to navigate only the organic scale.

However, the aforementioned works exemplify that further improvements
in terms of visualization are needed in order to substantially facilitate
scientists’ tasks during multi-scale biomedical exploration. For instance,
standard graphical user interfaces (GUI) do not provide a simple method for
transition between scales, and traditional approaches that conserve spatial
dimensions often prevent important small scale data to have an adequate
visibility in large scale views. Traditional approaches used in multi-scale
biological visualizations are summarized in Table 2.1.

Many authors [64, 137, 164] have called for efforts to create a multi-
disciplinary work in an integrated visualization of biological data: "the
revolution in biological data visualization hasn’t started yet" [164]. Except
in the domains of genomics and proteomics, with the help of InfoVis sub-
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Table 2.1: Conventional approaches regarding multi-scale biological visualizations
(e.g. [130, 212, 223]).

Exploration features Conventional approaches

Representation of data sets based on Tree list structure

Visualization scenario Flat desktop

Superposition of data sets Overlapping

Focus and Context technique Preserving spatial dimensions (placeholders)

Visual semantic means among data sets None

Rendering of data sets Single data sets

Amount of rendered data sets Few

field (c.f. Sec. 2.2.2), it is considered that no considerable advances have
been made in multi-scale biomedical visualization [145]. Biologists aspire
to soon have an integration of biological data in frameworks that allow a
simultaneous presentation and navigation across linked data from tissue,
cellular and molecular scales [165]. Visual links which preserve the context
are needed in complex visualizations for finding elements with high user
comfort [205]. This kind of visualization environments, as proposed in
[165], would facilitate a collaborative and multidisciplinary investigation
approach for analyzing multi-scale biomedical data (Fig. 2.20).

Figure 2.20: Integrated visualization environment described as desired
(source [165]).

2.4 design of visualization for scientists

Visualization is a powerful tool for scientists in the process of understanding
data and their context. Visualization researchers try to give meaning to
visual data for scientists in order they to gain systematic insights into many
domains [233]. Therefore the creation of scientist-centered tools focused on
the scientific process of data analysis is needed [203].

Moreover, the study of the user experience is an established procedure
that analyzes the behavior of the user facing a man-machine interface [147].
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Based on user feedback, the design of the interface is polished or modified.
Although user experience can be applied universally to the design of every
machine, it is gaining importance in the context of designing scientific
visualization systems [116].

In this section, aspects proposed in recent literature regarding the design
of a visualization are reviewed, taking account the double dimension of the
perceiver of a scientific visualization, as a scientist and generally as a user.

2.4.1 Scientist-centered visualization

Visualization researchers try to provide a visualization tool to a scientist
in order to help him or her in the understanding of complex data. The
effectiveness on the creation of a visualization encompasses a set of steps,
involving an initial analysis, frequent evaluation and validation.

Development of a new visualization

The analysis of a creation of a new visualization has to be wide, considering
very different alternatives:

• The first option is no creation of a new visualization. Wijk states
that "visualization is not good by definition" [221]. Visualization re-
searchers should avoid visualizing information for scientists that could
be extracted by automated data analysis and does not require direct
human interpretation.

• The reuse of existing visualization software can also be a viable
solution. For instance, several open-sources viewers of the standard
DICOM are available, allowing the development of own modules or
plugins for concrete purposes, e.g. YaDiV [82] and OsiriX [188].

• Third, the creation of a novel visualization has to involve doubts
regarding its effectiveness against the costs to develop it. The cost
associated with using a visualization system falls on the user and the
initial development [221]. The user cost is related to the time required
for learning how to use the new tool, converting the user data to the
system format and interpreting the presented results, which can be
minimized by user experience factors. The high price of the initial
development costs, encompassing to have a novel idea and develop it,
constitute the major factor.

In this context, the requirements analysis, the review of state of the art
and the development of a new idea accordingly are not enough to achieve
success. The preparation of a study on advantages and limitations is crucial
before starting to work on a new visualization application.

Evaluation of visualization methods with the help of users

Studies analyzing users’ feedback are an important instrument for evalu-
ating a visualization (e.g.[85, 126]). This kind of studies can improve the
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quality of the performed visualizations as it aims to analyze their strengths
and weakness.

Frequent evaluation during the design process

Working closely with the scientists is the best way to develop a visualization
tool. In practice, visualization researchers have limited sources of informa-
tion about the application required to be designed. Therefore, it is necessary
to answer very soon if the visualization is really giving the scientist the
information needed. In order to provide concrete usability to the visual-
ization, a frequent evaluation has to be done during the design cycle, e.g.
by testing isolated and specific usability hypotheses [232]. Johnson goes
further, expressing that visualization researchers should use the scientific
method during the design process of a visualization, including phenomena
observation, hypothesis formulation, results prediction and evaluation [116].
This would ensure the creation of a tool that is attached from the scientific
meaning.

2.4.2 User-centered visualization

Innovative visualization tools can be difficult to learn due to the complexity
of data and tasks. In this context, as users are part of the visualization
process (c.f. Sec. 2.1), perception factors and software usability principles
are essential to successfully support the understanding required in any
visualization tool.

2.4.2.1 Perception factors

Human factors are strongly suggested to be considered in order to improve
the visualization design [215, 235]. Visualization can go beyond a faithful
representation incorporating information by means of different features
that human perception can decode, taking advantages of the mechanisms
in the human visual system, as illustrated by the following examples:

• Use of color: Considerations about color theory (distance, linear sep-
aration, categories) by means of performed analysis on perception
can help choosing the optimal color scheme that facilitates the under-
standing on a particular application, e.g. an intuitive blending color
between two given colors [85], or an instinctive color scheme for tree
visualization (node-link visualizations and treemaps, c.f. Sec. 2.1.3.2)
[211].

• Shape: The humans’ ability to distinguish between shapes can be
used in order to encode different features. For instance, the use of
shape primitives in node-link diagrams instead of nodes and links
can facilitate the interpretation of software design diagrams [215].
Even the fundamental selection between cartesian or radial diagram
as the basic shape for visual data mapping has been questioned and
analyzed, considering factors such as aesthetics, efficient use of spatial



2.4 design of visualization for scientists 53

space and circular behavior of data, as relevant for the user preference
[57].

• Texture: The use of perceptual texture elements also known as pexels,
characterized by color, density, height or orientation can help users in
shape perception [125].

• Pre-attentive processing: A limited group of visual features can be
processed unconsciously by obtaining information from the visual-
ization without the need for focused attention, independently of the
number of data elements and the display size [103].

Other relevant aspects are size, contour and sharpness [215]. However, a
combination in a specific application should be evaluated, as these features
together are not always favorable.

An example which shows the importance of the perception factors is
depicted in Figs. 2.21, 2.22. These figures represent the femoral cartilage
thickness by using different colormaps (c.f. Sec. 2.1.3.1), tested during the
development of a visualization tool for its representation [176]. In this
example two aspects have been analyzed to evaluate both visualizations:

• Injective mapping functions: The visualization pipeline, depicted in
Fig. 2.3 has the mapping function as the most important factor in the
process chain. In order to design effective visualizations, a required
property of this mapping function is that this function must be in-
jective, i.e. different values of data can not be mapped as the same
value of a visual attribute [210]. In this example, colormap functions
are used as mapping functions. In Fig. 2.21, the visualization was
designed to have data = 0 and nodata the same value of a visual
attribute (red color), leading to confusion. Instead, in Fig. 2.22 the map-
ping function is injective: data = 0 and nodata values have different
color values (red and white, respectively).

• Color selection: In the colormap of Fig. 2.21, red areas represent
thinner cartilage while blue areas represent thicker cartilage, going
through yellow and green colors (i.e. combination RYGB). Instead,
in the map of Fig. 2.22, red areas represent thinner cartilage, green
areas represent thicker cartilage, going through yellow (RYG), while
white areas represent nodata. First, note that Fig. 2.21 wastes part
of the interval color (red) to represent nodata, stretching the use
of the other colors for areas with data. This is alleviated by the use
of the combination RYGB, which gives a wider interval of colors.
However, analysis on perception (e.g. [84, 85]) have revealed that the
combination RYGB is not an intuitive blending color between RB, as
lila color is considered better in studies with users than yellow and
green. Instead, Fig. 2.22 has a more effective colormap, as yellow is an
intuitive color for blending between the extreme values red and blue.
In addition, in this case, as previously indicated, red color naturally
highlights the abnormality of cartilage thickness (thinning).
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Figure 2.21: Example of ineffective color coding for visualizing femoral cartilage
thickness.

Figure 2.22: Example of effective color coding for visualizing femoral cartilage
thickness, which has been applied in a visualization tool [176].

Learning process for new visualizations

The appearance of new representations conduces users to complain because
of standards in representations. The perception of information depends
strongly on the viewer’s understanding of the given symbol system, e.g.
hard tissues are represented with white color, soft tissues with black. Ed-
ucating viewers may improve their understanding of data, helping them
to gain new insights [70]. This learning process can be simplified if the
visualization tool involves the following features [152]:

• Integration: Merging tools in the same program eliminates unneces-
sary navigation and reduces manual interaction times.
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• Interoperability: A complete integration in the same visualization
software might be not effective due to the high cost, as previously
described in this section. For instance, if a data format is not supported,
it should at least be possible to process or convert it with an external
program, requiring clear software protocols, as described in [223].

• Navigation aids: In a complex visualization, it is easy to lose track of
the current position and context. Navigation aids like an overview
map, colored floating labels or other semantic information can help
to keep track of the zone the user is currently exploring. The starting
screen of such a system should enable the navigation across all the
structures [109].

The achievement of these improvements in the biological visualization
tools is a slow process. Authors recognize that working on usability en-
hancements is less rewarding in science than inventing new ideas and
approaches [164].

2.5 user interaction

Interaction constitutes the fundamental auxiliary channel for visualization,
as it is the way to control its flow. The exploration of a phenomenon is
facilitated by using interfaces in which the perceiver can both observe a
representation of the phenomenon and also interact with it (c.f. Fig. 2.1),
satisfying the concrete enquiries of the perceiver during the exploration.

This section is aiming to illustrate the user interaction concepts regard-
ing the coupling visualization-interaction, which have been introduced
in Sec. 2.1. First, this section briefly describes the basic principles of the
Human Computer Interaction (HCI) field, its definition and terminology,
categorizing different HCI approaches. Second, it summarizes related work
of the current main lines of research.

2.5.1 Basic principles

Definition of Human Computer Interaction

Human Computer Interaction (HCI) is a multidisciplinary subfield of re-
search of computer science, which focuses on the design of the interfaces
between the users and computers [73]. HCI has its roots in the pre-computer
era, when this research went under the name man-machine interaction.
Nowadays, the importance falls on an individual or a group of users inter-
acting with any computer-based technology. Interaction means any kind of
communication (or modality) between user and computer, such as feedback
or control of a task. In order to tackle this research, expertise encompasses a
variety of investigation areas besides computer science, such as engineering,
human factors, cognitive science, psychology or sociology.

The design of a HCI interface has to keep the balance between function-
ality, usability and user experience [147]. Functionality defines all abilities



56 basic principles and related work

of a system that HCI should provide access to. Usability evaluates if the
user can accomplish with a given interface the functionality of the system.
Therefore, the variation of realizations of interfaces can result in different
ranges of functionality covered to different extent. Finally, user experience,
already introduced in Sec. 2.4, investigates the behavior of the user about a
particular interface.

Classification of Human Computer Interaction

HCI interfaces can be generally categorized based on the activities per-
formed by the user [152]:

• Physical: This category encompasses interaction which makes direct
use of senses and muscle actions [118], being possible to distinguish
three subcategories related to the diverse human senses [159]:

– Vision: Many input devices rely on human vision as the quick-
est and widest channel for interpreting information of the hu-
man, highlighting therefore the importance of visualization, e.g.
screens, graphic tablets, printers.

– Audition includes all means where hearing, human speech, audio
signalization is involved, e.g. sound clue when pressing a button.

– Touch encompasses all interfaces involving passing forces and
sensations to human skin and muscles but also controlling objects
with variable force actuated by human, e.g: mice, trackballs,
keyboards or haptic devices (see Sec. 2.5.2).

• Cognitive: This category involves the analysis of the mental capabilities
of user, such as understanding, learning, reasoning via cognitive
models [204], or in a more direct manner in brain computer interfaces
[69]. Affective computing focuses on the emotional state, allowing the
system to have influence on and be influenced by user’s emotions and
allowing a system to sense emotional feedback [174]. Those lines of
research are still relatively new fields in HCI.

Note that the majority of developed interfaces involves more than one of
the aforementioned groups, even though the interaction is usually based on
one concrete aspect.

In a more detailed analysis, it is necessary to introduce the concept of
modality. A modality is any input or output that enables users to interact
with the computer [118]. This concept allows to separate interfaces as
unimodal (if it has only one modality) and multimodal (if it has more).

2.5.2 Related work in user interaction

In this section, the current main lines of research in HCI are briefly described.
This classification, presented with some illustrative examples, is based on
the different number and nature of the modalities which are involved in
the design of the interface [118, 152].
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2.5.2.1 Unimodal systems

Visual systems constitute the widest area in HCI research, and is intrinsi-
cally related with the image processing field. Face expression recognition
constitutes one of the most active research topics for the development of
responsive and affective HCI interfaces [50]. Moreover, body expression
recognition gained more interest due to the increasing reability of whole-
body sensing technology and its decreasing costs [123]. Another relevant
line of research is eye tracking [106], which is commonly used as a form of
communication for disabled people, e.g. [139], and whose analysis requires
visualization techniques based on data visualization, timelines and scalar
maps (c.f. Sec. 2.1.3) [54].

Hand gesture interaction [179] allows a direct manipulation and explo-
ration of virtual objects, freeing the users from a demanding preparation
of learning how to interact, if supported by understandable feedback. This
kind of interaction was, until recently, expensive and had to deal with
computationally intensive computer vision algorithms, a high latency and
an uncomfortable work area for the user [124]. In the recent years, constant
technological growth made intuitive, flexible and robust alternatives, such
as the Leap Motion device [9, 236]. Moderate pricing allowed access to
high quality interfaces, opening new perspectives for elaborated systems
for medical imaging exploration. As a result, many new applications of
hand gestures in the medical field have emerged [231].

Audio systems are growing in popularity since robust cloud-based voice
recognition systems have been introduced [48]. On the other hand, tradi-
tional desktop voice recognition systems started offering ways to recognize
speaker, from a prelearned database of voices [246]. Another approach is
human-made sign detection, extracting from audio signal the speaker’s
mood [230].

Sensor systems encompass a large number and variety of applications
that use at least one physical sensor. Basic examples are keyboard, mouse,
joystick and pen-based sensors. Other more complex realizations include
pressure sensors, motion tracking sensors and haptic interaction.

Haptic interaction focuses on devices which allow the user to both ma-
nipulate a virtual object and feel force feedback reactions, such as forces,
vibrations or motions. Haptic devices are useful in a wide variety of do-
mains, such as medicine, robotics, military applications or Computer-Aided
Design (CAD) systems [227]. In medicine, haptic interfaces play a significant
role in medical simulation and training. For instance, the utilization of sen-
sor systems during surgeries keeping the natural feel of operations, while
working through robotic equipment on organs in small scale and rescaling
visual image along with a level of touch sensation [166]. Another example of
a haptic environment is presented in Fig. 2.23a. The ability to obtain haptic
feedback while preparing pre-operational planning is crucial for achieving
success in medical procedures, e.g. assembling fragments of fractured bones.
Vlasov et al. have described different methods for computing the forces in
haptic interaction, denominated haptic rendering [226, 229].
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a)

b)

Figure 2.23: (a) Example of haptic interaction: Virtual reality room with a Haption
INCA 6D device [7] at Welfenlab. (b) Example of augmented reality
interaction: The user is wearing a VR helmet and is interacting with
VR content together with a reference image of reality (source [152]).

2.5.2.2 Multimodal systems

Multimodal systems combine the strengths of several unimodal systems,
working analogously as human beings, who process information from the
environment and in parallel using different senses [112]. The multimodal
human-computer interaction is based on the premise that effective inter-
action is likely to take place when different input devices are combined,
allowing a natural communication with the computer. As huge advances in
unimodal systems have been done, multimodal systems has as a main key
technical challenge the way of integrate all those unimodal inputs [217].

Multimodal interaction allows alternative communication methods for
different situations and environments. For instance, hand gestures can re-
place mouse interaction by mimicking it and following the same interaction
strategy (simple pointing, dragging, etc.) [36], but replacing the mouse com-
pletely could lead to lack of interaction tangibility [111]. Advantages and
disadvantages of each visualization-interaction application lead to propose
diverse new integrated interfaces.

The design of environment based on virtual or augmented reality mo-
tivates the use of multimodal systems. Virtual Reality (VR) [245] is an
immersive environment that simulates a physical world, in which the user
can interact with their objects. Augmented reality [60] aims to enhance the
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view of the physical world by including computer-generated data to it
(Fig. 2.23b).

2.6 knowledge formalization

Knowledge formalization pursues the description and representation of the
knowledge in a domain, e.g. a specialty in medicine. Ontology constitutes
a rich form of database systems that firstly describes the domain [79] and
secondly provides this information to another knowledge technology entity
such as a visualization system [154]. The visualization techniques used
for the representation of the knowledge stored in ontologies are generally
borrowed from the information visualization subfield (c.f. Sec. 2.1.3.2).

2.6.1 Ontology as formalization of knowledge

The aim of knowledge formalization is to represent knowledge about a
certain domain in such a way that a computer could perform the process
of reasoning on objects of that domain as a human would [200, 150]. Its
applicability in a computational context for structuring and organizing data
is given by ontologies.

Ontologies provide a set of well-defined terms for communicating knowl-
edge about a domain with a set of relationships that hold among the terms.
This well-formed and machine-readable terminology facilitates the construc-
tion of inference statements (automated reasoning) from the information at
hand [154]. The uses of ontologies are mainly two:

• (i) structuring knowledge when capturing and modeling, and

• (ii) information fusion, filtering and presentation.

An ontology is "a formally explicit specification of a shared conceptual-
ization" [207], being necessary to define the aforementioned terms:

• Formal: The meaning of terms is unambiguously defined and stated
using mathematical axioms and formal definitions, guaranteeing
machine-readability and thus, allowing automated reasoning.

• Explicit: Concepts and restrictions are explicitly defined. They allow
creating domain assumptions explicit for reasoning and support hu-
man understanding of a domain.

• Shared conceptualization: Regarding conceptualization, the abstract
model of a phenomenon is formed by identifying their relevant con-
cepts. In addition, this conceptualization has to capture a consensual
knowledge, rather than an individual view. According to Schulz et al.
[193], a good ontology has to be adequate to the domain to be repre-
sented and thus has to reflect current scientific knowledge available
about the domain to be modeled.
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Ontologies are used to define concepts, relationships, and other distinc-
tions that are relevant for modeling a domain [92]. The representational
primitives of an ontology [93] are:

• Classes (or entities): Objects that have properties in common and au-
tonomous existence, which usually are positioned in hierarchies, i.e.
classes may have superclasses and subclasses. For instance, "Tibia",
"Femur", "Patella", "Femoral Cartilage", "Muscle", "Extensor" are ex-
amples of entities for a knee joint. "Extensor" is a subclass of "Muscle".

• Relationships: Logical links between two or more entities, i.e. the ways
in which concepts are associated with another one. For instance,
"belongs to" is an example of a relationship that can exist between the
entities "Femoral cartilage" and "Cartilage".

• Attributes: They describe the elementary properties of entities or re-
lationships. In the case of attributes of entities, they are the general
properties of concepts. For example, "Mean thickness", "Maximal thick-
ness" and "Minimal thickness" are possible attributes of the "Femoral
cartilage" entity.

Modeling the aforementioned primitives depends on the domain under
formalization. Criteria about the ontology design can be found in the
literature, e.g. [157, 193].

Individual is an object in the class represented by the entity, i.e. it consti-
tutes an instance of an entity. For instance, "a tibia" of a given "patient 1" is
an example of instance of the entity "Tibia", and "a femoral cartilage" of the
"patient 2" is an example of instance of the "Femoral cartilage" entity.

In the same way, an instance of a relationship is an n-tuple made up of
instances of entities, one for each of the entities involved [61]. For example,
considering the aforementioned relationship "belongs to" between "Femoral
Cartilage" and "Cartilage", an instance of a relationship would be the double
"(femoral of patient 1, cartilage of patient 1)".

Note that ontology does not need to include any individuals. This prop-
erty actually makes the difference between ontology and knowledge base,
altough it is difficult to separate their denominations in the literature [61]: a
knowledge base is a technology used to store information, adding concrete
instances to the ontology [128]. Ontology provides the "skeletal structure
for a knowledge base" [208]. In more detail, there are different classes of
knowledge and the corresponding information artefacts for the represen-
tation of that knowledge [193]: an inventory stores only knowledge about
individuals; background knowledge conserves what is typically true in
certain contexts; a thesaurus collects vocabulary terms; and an ontology is
an artefact for representing classes of entities and the properties they have
in common.

In an ontology, axioms also may be expressed [61]. Axioms are model
sentences that are always true. They define general knowledge pertaining
the elements in the ontology. For example, an axiom would be "a mean
thickness of cartilage less than a specified value is medically considered
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Figure 2.24: Ontology visualization of the organization of a publishing house with
the Jambalaya plugin for Protégé [190], the most widely used ontology
editor and knowledge base framework.

cartilage thinning". These axioms are formalized in a logical language and
they are essential in order to get automatic reasoning, and then, to design
good ontologies [193]. Following up with the example, if the "patient 1’s
cartilage has a mean thickness less than this value", then with the axiom, the
reasoner can infer that "patient 1 suffers cartilage thinning". The reasoner is
a program that infers logical consequences from a set of explicitly asserted
facts and axioms, and typically provides automated support for tasks such
as classification.

Formalisms are needed so that not only humans may be able to agree
upon a shared non-ambiguous conceptualization, but also the machines,
may be able to parse it, interpret it and communicate between them. For that
purpose, Description Logics (DL) [40, 149], a decidable fragment of First-
Order Logics was created and allows ontologies to be expressed in a struc-
tured, computer-interpretable and formally well-understood way. They form
the core of the ontology language OWL 2 (Web Ontology Language)[45],
arguably the most popular language to express ontologies. The Semantic
Web provides a "common framework that allows data to be shared and
reused across application, enterprise, and community boundaries" [25].

The ontology approach constitutes an integral part of many successful
knowledge technologies [154]. Those technologies are computer-based tech-
niques whose aim are to manage knowledge, i.e. embedding knowledge
in computer systems, storing in an easy-access way to be able to identify
its relevance for a specific problem. They use the information technology
from a practical perspective combining ideas from different fields, such as
psychology, philosophy, artificial intelligence, engineering, business studies,
computer science and web technologies.
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2.6.2 Ontology visualization

Ontology by definition is an abstract conceptualization and there is no one
single, clear and generic way to visualize it. Techniques borrowed from
the InfoVis subfield (c.f. Sec. 2.1.3.2, [119]) help to explore and interact
with an ontology, detailing its topological information (Fig. 2.24). Some
representative examples [149] are:

a) b)

c)

Figure 2.25: Examples of InfoVis techniques for ontology visualization: (a) treemaps
(source [41]), (b) node-link diagrams (source [74]) and (c) Key-Concept
Visualization (source [156]).

Treemaps have been proposed as a tool for visualizing the Gene Ontol-
ogy [41, 4] (Fig. 2.25a) Treemaps are appropriate at giving a quick overview
of the proportions of complex abstract data. Size and color are used to
provide a mechanism to evaluate details about genes of interest.

Node-link diagrams represent ontologies as a set of interconnected nodes,
presenting the taxonomy with a top-down or left to right layout. The user
is generally allowed to expand and retract nodes and their subtrees, in
order to adjust the detail of information shown and avoid display clutter.
An example is a node-link diagram based on a hyperbolic tree (Fig. 2.25b).
The node of focus is usually the central one and the rest of the nodes are
presented around it, reduced in size until they reach a point that they are no
longer visible. In order to combine important and additional information,
those are based on the notion of distorting the view of the presented graph.

Key-Concept Visualization (KC-Viz) [156] relies mainly on topological prop-
erties of the ontology as criteria of the selection of the most information
rich (key) concepts to show (Fig. 2.25c).
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2.6.3 Ontologies in the biomedical domain

Ontologies are omnipresent in the biomedical domain [35]. They are usu-
ally found under the group of the ontologies denominated application
ontologies. Application ontologies are domain specific and cover directly
domain-specific terms and relations, helping to organize heterogeneous
data into semantically sensible chunks of information, or to document back-
ground knowledge for further reuse and integration. On the other hand,
domain-independent ontologies serve to establish a common framework in
which application ontologies may reside and be integrated [91].

Applications of ontologies in the biomedical domain encompass defini-
tions and classifications of common medical terms to explicit specifications
for a focused domain [44]. Regarding the first group, SNOMED CT [201] is
one of the most evident usages of ontologies in medicine for the definition
of common medical terms. For specific domains, examples are Gene Ontol-
ogy (description of gene products) [4, 37], FMA (human anatomy model)
[187] and Radlex (unified language in radiology) [129].

Some recent tools use more complex visualization techniques for repre-
senting information contained in biomedical ontologies than the examples
illustrated above. For instance, Phenoblocks [87] creates radial layouts in
order to analyze phenotypes between patients using the Human Phenotype
Ontology [185]. Network2Canvas [209] employs visual patterns of enriched
canvases to present gene-set libraries from the Gene Ontology.

2.7 shortcomings

Although there have been an extensive number of developments regarding
exploration and organization of biomedical data, only limited attention
has been given to some essential aspects that can certainly improve the
understanding and analysis of multi-scale biomedical data. In the previous
sections, basic principles of visualization and related work regarding ex-
ploration of biomedical data have been described. The current section aims
to give an overview of the disadvantages found along this chapter, which
constitute the motivation of this work.

The shortcomings for the exploration of multi-scale biomedical data are
summarized in Table 2.2.

Table 2.2: Summary of shortcomings for exploration of multi-scale biomedical data.

Shortcomings

Visualization research has only partially contributed tools for facilitating major scientific insight

Standardized visualization systems do not allow a complete study of biomedical phenomena

Current multi-scale visualization frameworks are insufficient for understanding biomedical
phenomena

Limited attention has been given to scientists’ and users’ experiences

Innovation in multi-scale exploration lacks a coupled interaction

Ontology visualization does not provide realistic representations needed for a multi-scale
biomedical data exploration
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Visualization research has only partially contributed tools for facilitating major
scientific insight

Visualization is a method of presenting experimental and computational re-
sults, enabling users to observe their simulations and computations through
visual methods in a wide amount of fields, e.g. technology and science. In a
more general definition, visualization constitutes a synonym of understand-
ing. Research in visualization can be approached from different points of
view, such as cognition and perception issues [235] or the development of
many algorithms in the fields of scientific and information visualization.
An incremental loop of investigation on methods has caused specialization
of visualization techniques. These methods as well as the foundations of
visualization were summarized in Sec. 2.1.

Despite huge developments in visualization research, it is necessary to
emphasize that more attention has been given to analyze the imperfections
of the developed methods rather than analyze demands of new potential
users of visualization. Several authors, e.g. Johnson or Van Wijk [116, 221],
have reflected that visualization research has focused on the aforementioned
incremental loop of investigation and has paid less attention to serve as
a tool for getting a major scientific insight. It is necessary to remind the
goal of visualization: to facilitate the cognitive process of their users for
comprehending information and discovering new features (c.f. Sec. 2.1.1).

Standardized visualization systems do not allow a complete study of biomedical
phenomena

The study of a system or pathology in the biomedical field involves pro-
cesses that are occurring at very different spatial dimensions. Related in-
formation are acquired via multiple sources and are currently analyzed
separately under specialized medical domains (c.f. Sec. 2.3). This specializa-
tion allows to deepen in concrete details, but constitutes a double-edged
sword [163], as it fails to analyze the relations among such analyses and the
overall meaning.

Experts of these domains use on a daily basis isolated systems, allowing
only the exploration of features involving a concrete specialty and scale.
Many visualization tools integrate data from multiple sources [77], support-
ing a rich local visualization. However, tools are not ready to observe the
complete picture of a biomedical phenomenon. A global analysis of the
impact of such phenomena requires a multi-scale framework [32], where
the different spatial scales studied by different specialties could coexist and
be examined.

Current multi-scale visualization frameworks are insufficient for understanding
biomedical phenomena

Authors have recently been very critical with the current state of biomedical
multi-scale modeling and visualization. According to Gehlenborg, "truly



2.7 shortcomings 65

integrated visualization of systems biology data across the entire range
of possible data types is still very much in its infancy" [86]. The existing
multimodal exploratory systems (c.f Sec. 2.3.3) do not allow a flexible explo-
ration of multi-scale data. An example was depicted in Fig. 2.19, showing
a multimodal visualization of clinical gait analysis in the assessment of
total knee replacement. Similarly to other current systems, this visualization
provides a standard GUI, composed of a set of opaque windows, dialog
boxes and list structures in order to configure viewports, which do not
allow a flexible exploration of all available data (e.g. overlap of data sets,
lack of semantic information regarding the data sets).

Multi-scale visualization offers techniques and methods for dealing with
data at different spatial dimensions, whose techniques and applications
were summarized in Sec. 2.2. However, understanding a biomedical multi-
scale process requires adaptation of the current techniques on multi-scale
visualization. An example was depicted in Fig. 2.18, showing the multi-
scale visualization of different scales of CT data of femur. This visualization
preserves the conservation of spatial dimensions and uses placeholders as a
focus and context technique, based on a realistic point of view. However,
small scale data do not have visibility in a large scale view, avoiding a global
view of all the data sets.

Current approaches used in biological visualizations were summarized in
Table 2.1. In order to facilitate the exploration of multi- scale biomedical data,
flexible multi-scale visualization tools are needed. Among other features,
they should integrate information independently of the spatial dimensions
and highlight important relations among data sets.

Limited attention has been given to scientists’ and users’ experiences

A main reason why visualization has restricted its role for providing under-
standing in science is based on the limited attention given to the users of
visualization [137]. Visualization researchers have not spent enough time
with potential users analyzing their demands and their underlying fields.
As there has not been an alliance between visualization researchers and
the fields of application of visualization (in this case, biomedical scientists),
this fact hinders the creation of techniques and tools which increase the
potential of researchers for solving challenging scientific problems.

Several dispersed claims and proposals have been appearing in recent
literature, e.g. [215, 221]. These features, which were described in Sec. 2.4,
take into consideration the double dimension of the perceiver of a scientific
visualization, as a scientist and more generally as a user. The design of a
biomedical visualization tool should take into account both the scientific
purpose of the visualization (c.f. Sec. 2.4.1) and also aspects regarding
user experience (c.f. Sec. 2.4.2). This interplay of working with and for the
scientists would provide a more complete meaningful analysis, leading to
solutions that would provide scientists with new knowledge [152].
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Innovation in multi-scale exploration lacks a coupled interaction

Interaction constitutes a fundamental channel for visualization acting as
control flow between the user and the phenomenon under analysis in
the computer (c.f. Sec. 2.5). Interaction facilitates the exploration process,
as questions that follow the premises "what if" are solved with the cou-
pled system composed of visualization and interaction. The importance
of interaction increases due to the complexity of visualization of multiple
biomedical data sets (c.f. Sec. 2.3). It is even more necessary to implement
the visual-information-seeking mantra "overview first, zoom and filter, then
details-on-demand" [197].

Although innovation in interaction is not the scope of this work, an
innovative solution regarding visualization (whose need has been described)
strongly requires a coupled interaction system in order to obtain an intuitive
and user friendly data space exploration of multi-scale data. Therefore, both
visualization and interaction features for the exploratory system have to be
designed with a common strategy.

For the exploration of complex scenarios the use of conventional interac-
tion systems (e.g. 2D screen, keyboard and mouse) appears to be insufficient
for providing access to the exploration of multi-scale data. In the recent
years, constant technological progress in HCI technology allowed access to
high quality interfaces (c.f. Sec. 2.5.2), opening new roads for interaction in
visualization systems.

Ontology visualization does not provide realistic representations needed for a
multi-scale biomedical data exploration

Ontologies constitute an essential part of technologies which manage knowl-
edge about a domain (c.f. Sec. 2.6). The applicability of ontologies in the
biomedical domain is proven due to the large number of tools that make
use of them, including classifications of medical terms and organization
of heterogeneous data. Therefore, ontologies can support efficiently the
storage of knowledge regarding multi-scale biomedical data.

However, traditional visualization techniques for representing the knowl-
edge encoded in ontologies do not provide a realistic representation. The
focus has been to represent the concepts in text formats and the relations
among the entities (c.f. Sec. 2.6.2). The visualization techniques applied are
mainly from the InfoVis subfield, as the spatial domain for representing
such information (text) is not inherent and therefore is artificially given (c.f.
Sec. 2.1.3.2).

Thus, ontologies alone are not enough to provide both medical back-
ground knowledge and exploration of multi-scale biomedical data. The
ontology visualization based on InfoVis allows only to explore the concepts
attached to the data, but not to observe the data per se. Although ontology
can be important for efficiently storing knowledge, its visualization is not
enough for a multi-scale data exploration, as the data in biomedicine is
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substantially based on physical measurements, and therefore suitable for
techniques of SciVis subfield (c.f. Sec. 2.1.3.1).





3
M E T H O D O L O G Y

As in the review of the state of the art in Chapter 2 exposed several short-
comings in the biomedical multi-scale exploration (c.f. Sec. 2.7), the current
chapter describes the proposed approach to overcome them. Section 3.1
introduces the new contributions, comparing them with the state of the art.
The proposed methodology is subsequently described in detail in the next
sections.

3.1 introduction

The presentation and exploration of biomedical multi-scale data are complex
due to the variety of data formats, a massive amount of information and
diverse levels of abstraction (c.f. Sec. 2.3). A visualization which separately
improves the understanding of each spatial scale is not enough, as for the
multi-scale exploration the importance lies in coupling the spatial scales.
Despite of the requests of authors for improving the exploration of biological
data across the complete range of scales [86, 164], the latest works have
shown that no major advances have been made to facilitate this task, which
is still in its "infancy" [86]. Multi-scale visualization offers techniques and
methods for dealing with data at different spatial dimensions (c.f. Sec. 2.2).
However, the current systems which deal with the multi-scale exploration
are insufficient for understanding biomedical phenomena. Among other
aspects, there is no visibility of small scales in large scale view [212], there
is no simple method for a transition between scales [223] or they do not
provide sufficient semantic means to visually understand internal relations
between data sets.

Understanding a biomedical multi-scale process requires adaptation
of the current techniques, therefore a novel multi-scale visualization ap-
proach is proposed in Sec. 3.2 addressing the importance of all scales and
emphasizing the relationships among data sets.

The data sets in a multi-scale biomedical scenario are collected from
multiple simulations and experiments from different domains. Therefore,
the presentation of such hetereogeneous information has very different
visualization properties. In this context, visual abstractions can help to
represent such data [116]. Coming from the foundational goal of visual-
ization (considering visualization as a synonim of understanding), the use
of techniques in visualization for understanding science might not make
a distinction between SciVis and InfoVis methods [182, 183], outlined in
Sec. 2.1.3. Effective visual abstractions based on InfoVis can indeed facilitate
the multi-scale exploration. However, as the major part of the data collected
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is based on physical measurements, SciVis visualizations are needed as
well.

Therefore, exploring multi-scale biological data sets requires both a real-
istic visualization of data sets and an effective visual abstraction for visual-
izing extracted information from them and relations among the data sets.
A combination of scientific visualization and information visualization
techniques addressing these requirements is proposed in Sec. 3.3.

Knowledge formalization can organize biomedical data sets into semanti-
cally connected pieces of information, as ontologies provide precise formu-
lations of the properties and relations of certain types of defined entities (c.f.
Sec. 2.6). Note that the traditional representation of knowledge encoded in
ontologies is based on InfoVis techniques. The organization provided by
ontologies is potentially relevant in a multi-scale scenario, as they could
store the organization of hetereogeneous information sources from several
scales. Furthermore, a complete analysis of a biological phenomenon (e.g.
a disease flow) requires the preservation of the known relations among
the data sets during the data exploration, which can be efficiently saved
with ontologies through the definition of relationships that hold among the
terms.

The proposed support of visualization based on knowledge formaliza-
tion addresses the aforementioned need of semantic means for the organiza-
tion and presentation of the data to be given to the user of the visualization
(Sec. 3.4).

There is a large amount of self-criticism among visualization scientists
because they have not spent enough time with potential users analyzing
their demands and their underlying fields [116, 221] ("Too often, creators of
visualization technology do not spend enough (or indeed any) time endeav-
oring to understand the underlying science they are trying to represent"
[116]. "There is a gap between our prospective users and the research com-
munity. Both do not have the proper stimuli to bridge this gap: individual
researchers are too busy increasing the number of publications they are
judged on, and for the end-users implementing new methods is far too
costly" [221]. Only building bridges between visualization researchers and
users is it possible to create better techniques and tools to provide to users,
thereby increasing their potential for solving challenging scientific prob-
lems. In biomedical domains, this interplay among visualization researchers
and scientists can provide a meaningful analysis and lead to solutions that
provide scientists with new knowledge that would not have been previously
possible.

In the present work, processing methods and visualization techniques
have been developed for accurately characterizing and interpreting data
on concrete spatial scales. In order to achieve this, the analysis of special-
ists’ needs, their data and the development of adequate tools have been
performed. Those methods are encompassed under the title enhanced
intra-scale visualizations, outlined in Sec. 3.5. In this context, the overall
visualization system (Secs. 3.2, 3.3, 3.4) constitutes a framework in which
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intra-scale developments facilitate the study of processes of multi- scale
nature.

Understanding the needs of scientists is not enough for a visualization
tool. An optimal design requires to address both the scientific purpose
of the visualization (user as a scientist) and also aspects regarding user
experience (scientist as a user). Several dispersed claims and proposals have
been appearing in recent literature (c.f. Sec. 2.4).

In Sec. 3.6, the present work addresses the importance of these aspects
under the title aspects regarding the design of scientist-centered visual-
ization tools. The proposed exploratory environment has been developed
optimizing a tight interplay with domain researchers, starting with the
analysis of the visualization requirements and continuing during the de-
velopment of the visualizations, performing also a preliminary evaluation
of the visualization environment. A coupled interaction with visualization
also facilitates the creation of scientist-centered tools [191, 192].

The proposed exploratory system is intended to be usable by a broad
group of users with expertise in different disciplines of medicine working
collaboratively on the same scenario. In that scenario, the experts analyze a
large set of data sets of multi-scale nature, discuss their conclusions, and
obtain insight from this process.

3.2 approach for multi-scale visualization of biomedical data

A complete study of biological processes involves biomedical data acquired
from different acquisition modalities and distributed over multiple spatial
scales. For instance, a phenomenon that occurs on the cellular level can have
its results propagated to tissue or even organ level (for a detailed example,
see Sec. 4.6). Those data have different spatial dimensions, diverse levels of
abstraction, and therefore diverse visualization properties. The analysis of
such multi-scale phenomena requires a simultaneous presentation of data
from different scales, thus, coupling scales in a multi-scale exploratory envi-
ronment. In order to overcome the shortcomings of the previous approaches

Table 3.1: Conventional approaches (c.f. Table 2.1) and proposed approach for
exploration of multi-scale biomedical data.

Exploration features Conventional approach Proposed approach

Representation of data sets
based on

Tree list structure Nodes displaying data sets

Visualization scenario Flat desktop 3D workspace

Superposition of data sets Overlapping Overlaying

Focus and Context technique Preserving spatial dimensions
(placeholders)

Multilayered workspace with
non-linear depth

Visual semantic means among
data sets

None: inferred by the
experience of users

Visual links thanks to an
underlying ontology

Rendering of data sets Single data sets Multiple data sets

Amount of rendered data sets Few Many, by distributed rendering
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regarding the presentation and exploration of these heterogeneous data
for facilitating scientists’ tasks in the multi-scale biomedical exploration
(c.f. Sec. 2.7), this work proposes an integrated visualization for multi-scale
visualization of biomedical data with the following exploration features
(Table 3.1).

Nodes displaying data sets

The proposed approach is based on the data sets as the main actors of visu-
alization. Each data set from a different acquisition modality is displayed
as an independent entity, called node (Fig. 3.1b). Each node is displayed
as a hollow cube or half-sphere that encompasses 3D or 2D content and
semantic information. The nodes allow for a direct inspection of the data
sets, as they are attached with their semantic information. In addition, the
nodes also provide a natural and flexible way to explore the contained data,
as they have the capability to be moved, to be observed from different sides,
i.e. observing them as they would be real objects.

The nodes constitute the basis for an intuitive and user-friendly data space
exploration. The exploration environment makes use of 3D stereographic
visualization for the representation of the nodes, as well as their data sets,
as most acquired biomedical data has a 3D representation, i.e. volumetric
objects. The interaction channel takes also benefit of the nodes, as it uses
gesture interaction for a natural exploration of the nodes and their contents
(see Sec. 3.6).

Conventional approaches are based on standard GUI and mouse and
keyboard as way of interaction, e.g. [223] (Fig. 3.1a). They usually are
composed of a set of windows and dialog boxes to configure viewports. In
such approaches, the information of data sets and their views are detached,
and a direct and natural method for exploring data sets is not provided, i.e.
it is necessary to configure viewports and to employ the keyboard and/or
the mouse.

a) b)

Figure 3.1: Representation of data sets based on a) tree list structure (source [223]),
b) nodes displaying data sets (proposed).
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3D multilayered workspace

The visualization scene consists of a 3D multilayered environment in which
the nodes are distributed (Fig. 3.2b). The layers are distinguished mainly by
the spatial depth (i.e. z-order), grouping the nodes with data of the same
spatial scale. In order to achieve that, each node is classified according to
the spatial range of the acquired data set, defining visualization properties
for the nodes on the scene (see Sec. 4.3 for more details).

Conventional approaches are based on a visualization scenario with flat
desktop (Fig. 3.2a) composed of a set of opaque windows and dialog boxes.
The 3D multilayered workspace allows for obtaining more space in which
the multi-scale data sets can be distributed and organized according to the
spatial dimensions.

a) b)

Figure 3.2: Visualization scenario based on a) flat desktop (source [223]), b) 3D
workspace (proposed).

In the environment proposed, the data sets are encompassed in the nodes
having a high grade of transparence, minimizing overlays among content
(Fig. 3.3b). As the nodes constitute the main actors of visualization and
interaction, the use of opaque dialog boxes is avoided (Fig. 3.3a), alleviating
the overlap of data contents.

a) b)

Figure 3.3: Superposition of data sets: a) overlapped data sets (source [223]), b)
overlayed data sets in the multilayered workspace (proposed).

Data sets are organized and structured according to their properties, such
as the spatial scale they belong to, and the visualization technique to be
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represented (see Secs. 4.2, 4.4). Those properties determine the appearance
and location of the data sets in the workspace.

Workspace with non-linear depth

The 3D multilayered workspace is composed of layers whose distance be-
tween each other is uniform. Such layers encompass nodes with contents
belonging to the same spatial scale but they do not preserve accurately the
spatial dimensions of the data sets. Therefore the depth of the multilayered
workspace does not preserve a linear relation with respect to the spatial
dimension, assuring an augmented representation of the smallest scales
(Fig. 3.4b). This approach allows for the exploration of all data sets, inde-
pendently of their dimensions, being important for the analysis of data in a
multi-scale scenario.

Multi-scale exploratory systems have focused on preserving the spatial
dimensions [144, 212], in which small scale data do not have visibility in
large scale view, avoiding a global view, as depicted in Fig. 3.4a. Instead,
the proposed approach allows for a direct extraction of information from
the context, alleviating the differences in the order of magnitude of data in
a multi-scale scenario.

a) b)

Figure 3.4: Representation of data sets a) preserving spatial dimensions, b) with
non-linear depth (proposed). The cartilage of meniscus is not visible
in a), as the spatial dimensions are preserved. Instead, the approach
depicted in b) allows for a direct exploration of all data sets in the
context of a multi-scale scenario.

Visual semantic links

Semantic means to visually understand internal relations between data sets
are provided in the visualization scene. The presentation of the data sets
is enhanced by perceptual cues in the relations between nodes, e.g. labels,
colored lines, arrows, enriching the understanding of the complete collection
of data. For instance, nodes which encompass data sets are interconnected
by arrows, highlighting well-known or established relationships about
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them, such as spatial origin of sources, anatomical structures or hierarchy
of evidences in a pathology (Fig. 3.5b).

This feature alleviates the complexity of presentation and exploration
of data in a multi-scale scenario due to the heterogeneity of the data
(c.f. Sec. 2.3.1). Current multimodal systems have not provided semantic
means to visually understand internal relations between data sets (e.g.
Fig. 3.5a). Applying those systems in a multi-scale scenario, the user of
the visualization could feel overwhelmed due to the amount of data; this
fact can be aggravated because users are not a priori familiar with all the
multi-scale data as they are coming from different areas of expertise.

a) b)

Figure 3.5: a) Example of absence of visual semantic means among data sets
(source [223]). b) Presence of visual semantic means among data sets
(proposed), indicating in this case the data source of the InfoVis visual-
izations.

The semantic-driven visualization is supported by knowledge formal-
ization (c.f. Sec. 2.6). In this work, an underlying ontology [13] provides a
set of well-defined terms for storing and communicating such knowledge
about the relationships that hold among the data sets in a multi-scale do-
main. This ontology has been supplied with visualization aspects, such as
node features and their dependencies, providing semantic means to identify
relevant items during the presentation and exploration. More details of this
methodology are described in Sec. 3.4.

Distributed rendering

The architecture of the visualization environment makes use of a distributed
rendering scheme for the composition of the scene. The distributed render-
ing architecture performs the composition of the visualization scene from
several data sets rendered on different machines (Fig. 3.6). The exploration
of a data set can require a lot of renderings of intense data sets structures
such as the cartilage tissue of Fig. 3.4b. This designed scheme can assure
a smooth rendering of the data sets when they are being explored, as it
avoids unfeasible cases when rendering large size of data sets in one single
machine.

The rendering scheme is designed in such a way that each machine
performs the entire rendering of a data set. This scheme is based on the
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premise that a single machine is currently sufficiently performant to render
the most complex data set for the purpose of this work (e.g. a complete
biomedical volume DICOM file). Therefore, traditional approaches for
distributed rendering [198] have not been considered. The architecture,
which addresses also issues of scalability and multi-platform design, is
described in detail in Sec. 4.5.

Figure 3.6: Illustrative schema of the distributed rendering and composition of the
visualization scene. The schema establishes dynamically that each data
set is rendered by a rendering worker entity, satisfying the rendering
requirements given by each data set. Subsequently, the visualization
scene, composed of several data sets is performed.

3.3 combination of scientific visualization and information

visualization techniques

The relevant types of biomedical data in a multi-scale scenario are very
heteregenous and use visualization techniques from both main subfields of
visualization, SciVis and InfoVis:

SciVis focuses primarily on physical data and provides realistic repre-
sentations. This subfield presents types of data that are inherently spatial
in a visual form, and those are based on physical measurements, e.g. CT-
scanning, light microscopy. Some of those techniques are equipped with
sophisticated mathematical computations evaluating the respective physical
measurements for presenting an appropriate visualization of the respective
spatial data, e.g. volume and image visualization (c.f. Sec. 2.1.3.1).

On the other hand, InfoVis uses data that is mainly not inherently of
spatial origin. The techniques from this subfield transform data into a
spatial presentation being graphically intuitively accessible, e.g. via charts
or graphs. After such a process that includes the selection of the spatial
representation of information, it is possible to get benefit from this data as
a means to amplify cognition (c.f. Sec. 2.1.3.2).

The presentation of relevant features of heteregenous multi-scale data
requires visualization techniques from both main subfields of visualization.
This conclusion came from an initial analysis of the requirements for the
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design of the visualization systems which had been performed (see Sec. 3.6).
Some data such as the measurements extracted from the nanoindentation of
cartilage, or the relations between data and evidences analyzed during the
investigation of osteoarthritis (Fig. 3.7) cannot been represented by means
of SciVis techniques, as those techniques require data that are inherently
spatial in a visual form. Instead, these kinds of data need to be processed
with the help of InfoVis techniques, which purposely provide a spatial
representation to those data that are not inherently of spatial origin (e.g.
by means of graphs or trees). This information complements the data
that are inherently spatial in a visual form, therefore representable by
SciVis techniques (e.g. volume visualization of cartilage thickness from
MRI-scanning).

Figure 3.7: Combination of SciVis and InfoVis techniques proposed. Nodes encom-
pass SciVis as well as InfoVis suitable data (source [150]).

The proposed approach for the presentation of multi-scale biomedical
data combines both InfoVis and SciVis techniques. Each node, displayed as
a hollow cube or half-sphere, encapsulates a data set which is presented
with the most suitable visualization technique, either SciVis or InfoVis
technique. This combination allows for both a consistent representation of
heteregenous data as well as the preservation of the optimal choice of the
representation of each data set.

The data structure and the architecture of the system are designed in
order to perform the aforementioned feature. First, visualization properties
are taken into account for the organization of the data (see Sec. 4.2). Such
properties are encoded in the underlying ontology, exploiting the knowledge
formalization for facilitating the collection and obtaining of information
from each data set (see Sec. 4.4). After the retrieval, the distributed rendering
scheme creates the scene. This scheme supports types of rendering for
representing SciVis as well as InfoVis contents (see Sec. 4.5).
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3.4 support of visualization based on knowledge formaliza-
tion

The difficulty of exploring heterogeneous data sets increases if means
to understand the meaning of such data sets and their relations are not
provided. Taking into consideration that the aim of visualization is to get
insight from a phenomenon (c.f. Sec. 2.1.1), an exploratory scene composed
by merging data sets of multi-scale nature might not be enough to obtain
valuable knowledge (c.f. Sec. 2.3.2). The need of semantic means gains even
more importance in a multidisciplinary environment, in which medical
experts try to analyze collaborately a multi-scale pathology. They have
depth expertise in one concrete specialty, but they lack the big picture.

Therefore, semantically relevant information is intended to be visualized
together in the multi-scale workspace. Providing visual semantic means
in the data sets to understand relations between them (e.g. pathological
relation between data sets) facilitates the exploration across all the multi-
scale data. In addition, functionalities and visual properties of the data sets
can be encoded in the ontology, automating and customizing the creation
of the visualization scene.

The representation of meaningful data sets in a multi-scale scenario
requires the acquisition of such information from some a priori knowledge.
This multi-scale biomedical knowledge encompasses information sources
that come from different scales, their relationships and data representing
or accompanying them. Such multi-scale knowledge is obtained from all
the domain specialists, which contribute with their data and expertise (e.g.
tissue, biomechanical engineers) [13].

In this context, knowledge formalization can represent knowledge about
several domains, as medical ontologies demonstrate (c.f. Sec. 2.6). Computer-
based techniques can perform the process of reasoning on concepts of those
domains, facilitating the presentation of data sets enriched with semantic
meaning. In order to specify explicitly that conceptualization, an ontology
can formally define what are the properties or attributes necessary to
document them and the means to identify relevant items.

Current ontology visualization tools, based on InfoVis techniques, are
not sufficient to give a cognitively rich and interactive exploration of the
multi-scale biomedical knowledge (c.f. Sec. 2.6.2). This fact would hinder
formalized semantic description and therefore the use of ontologies in a
multi-scale exploration of medical data.

In this work, knowledge formalization supports the storage of the multi-
scale biomedical knowledge and the relationships among multi-scale biomed-
ical data for visualization purposes. Instead that the visualization for each
specific profile, data type and need is explicitly encoded in the visualization
system, roles and functionalities and relations of different visual contents
can be obtained from information previously encoded in the ontology.
Therefore, the development of a unifying conceptual framework controls
the presentation of the data. Particular relevant features of the support of
visualization based on knowledge formalization are:
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• Extraction of visualization parameters for the creation of visualiza-
tion scene: Parameters of each data set as the spatiotemporal scale
it belongs to, the suitable visualization technique, as well as other
visualization parameters are encoded in the ontology, allowing for an
automatic creation of the visualization scene. This allows to automa-
tize, among others, the positioning of the nodes and the proper use of
a worker rendering entity to use for rendering a data set.

• Semantic links among multi-scale data sets: Data sets presented in a
multi-scale scenario have inherent semantic properties (e.g. properties
and features are being measured or investigated when obtaining and
presenting a data set) as well as internal semantic relations (e.g. the
relations among the different data sets in a flow of features evidenced
when exploring a multi-scale pathology, see Sec. 4.6). Those data sets
do not have per se such those semantic properties, but they have
a critical relevance for comprehending the multi-scale scenario. The
extraction of such abstract information is obtained from the multi-scale
biomedical knowledge via the underlying ontology. Such information
is represented in the visualization scene by a 3D immersive visual
display of semantic features showing connections with related data
sets.

• Customization of the visualization scene: Medical experts coming
from different fields have different backgrounds, perspectives and
interests in the different data sets of the scene. Therefore it is natural
that the mode to show the different data sets depends on the profile
of the specialist - user of the visualization system. Terms for this
customization are encoding in the ontology, such as "user profile" and

Figure 3.8: Example of links among nodes showing hierarchy of evidences in a
pathology.
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"interest" of the different profiles in the existing medical data sets and
concepts.

The underlying ontology, denominated in the following as multi-scale
ontology, serves as knowledge formalization of the multi-scale biomedical
knowledge. The multi-scale ontology constitutes the multi-scale biomedical
data management [13], which has been developed by IMATI within the
framework of the MultiScaleHuman Project [15]. The introduction of the
visualization components into the multi-scale ontology (e.g.[35]) allows
its use for automating, customizing and supplying semantic means in the
presentation of the biomedical data sets.

Following up with the current design of the multi-scale environment
(c.f. Secs. 3.2, 3.3), this section enriches the visualization system previously
described with semantic meaning. Knowledge from the multi-scale ontology
(e.g. classification of data, user profile, location of resources) is applied to
create the scene (e.g. the position of the nodes on the layers and their
appearance, visual links among nodes indicating semantic relationships
among the data sets they present, Fig. 3.8). The details of this development
are found in Sec. 4.4.

Figure 3.9 depicts the interconnection which has been designed and
developed between the multi-scale ontology and the exploratory system.
The multi-scale ontology, acting as a driver for data management, receives
requests and yields all relevant multi-scale biomedical information previ-
ously encoded to the visualization system. Such information is used for
the rendering of the visualization scene, allowing for a customized and
meaningful presentation of the data sets.

Figure 3.9: Simplified schema of interconnection of the multi-scale ontology [13]
with the exploratory system.



3.5 enhanced intra-scale visualizations 81

3.5 enhanced intra-scale visualizations

In addition to the introduced strategy for multi-scale visualization of
biomedical data, efforts have been made in this work in order to develop
enhanced intra-scale representations (Table 3.2). The aim of the intra-scale
visualizations is to get an in-depth characterization, presentation and anal-
ysis of data within the considered scale. Thus, the presented work also
describes processing methods and visualization techniques which enhance
the characterization and analysis of data available in concrete spatial scales.
Each of those methods facilitate experts from a concrete biomedical do-
main to be equipped with a new procedure for understanding their data.
Those intra-scale visualizations, together with the multi-scale visualization
environment lead to a new way of analysis of biological phenomena of
multi-scale nature.

Table 3.2: Summary of efforts towards the development of intra-scale visualizations,
indicating the involved domain and scale.

Development Domain Scale

Anatomical visualization of
helical axis data

Biomechanical engineering Behavioral scale

Overall similarity visualization
for comparison of helical axis
data

Biomechanical engineering Behavioral scale

Organization and exploration
of micro-scale data

Biology Micro-scale

In all those cases, a same procedure has been performed. Initially, the
demand of the experts have been analyzed, taking into considerations their
requeriments. Then, data have been carefully analyzed and solutions have
been performed, combining concepts from different fields. Subsequently,
adequate tools have been developed, providing experts solutions which
contribute for the improvement of their respective workflows analyzing
data.

Anatomical visualization of helical axis data

In biomechanical engineering, the axis of rotation about the knee joint
performing a motion (e.g. flexion-extension motion) is commonly discussed
in order to improve joint functionality and increase prosthesis longevity. The
generally adopted method to define this axis is widely considered as a fixed
axis throughout motion [75]. However, the description of motion based
on helical axes has been verified to be superior as it removes repeatability
errors [49, 218]. In contrast to the fixed axis of rotation, the description of a
bone motion in three-dimensional space can be more faithfully captured
in terms of a temporal sequence of helical axes and angles of flexion with
respect to a reference bone [202]. However, the existing applications (see
Sec. 5.2.2) used to represent helical axes lack an intuitive visualization to
analyze states and conditions (e.g. Fig. 3.10a).
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In this work, an intra-scale visualization that enriches the joint motion
representation based on a direct measurement of helical axes is intro-
duced (Fig. 3.10b, see Sec. 5.5.1). The implemented approach visualizes
the three-dimensional motion of patient specific bone segments and the
representation of the spatial configuration of the helical axes intersecting
the bone, focusing on the representation of the knee joint flexion-extension
motion. The realistic visualization of bone motion incorporating helical
axis data provides a more understandable representation of the knee joint
functional articulation, facilitating the description of the flexion-extension
motion for kinematical studies.

a) b)

Figure 3.10: a) Traditional representation of helical axes during a knee joint flexion-
extension motion (source [218]). b) Developed anatomical visualization
of helical axis data.

Overall similarity visualization for comparison of helical axis data

Following up with the analysis of helical axis data, the description of the
knee joint motion based on helical axes can refer either to Finite Helical
Axis (FHA) [53] or Instantaneous Helical Axis (IHA) [240]. While the first
method refers to a finite rigid body transformation between two distinct
poses, the latter uses infinitesimal transformation, thereby characterizing
the differential change along a curve of rigid body transformations.

Many, even recent recent biomechanical studies rely on the FHA approach
[218, 100, 140]. Altough it provides a rough estimate of the IHA as the two
poses approach each other, it is easier to compute. However, FHA is highly
sensitive to noise in the two sample poses involved and its computation
becomes numerically unstable for small differences, while on the other
hand using too large a difference yields only a bad approximation to the
IHA (see Sec. 5.2.1).

In this work, both the FHA and IHA are naturally discussed in the
unifying mathematical framework based on the Lie group of rigid body
motions, its Lie algebra and the exponential map relating those. This ap-
proach ensures the obtaining of only valid rigid body transformations,
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which by analytical differentiation effectively allows to calculate stable in-
stantaneous helical axes for an accurate analysis (see Sec. 5.4). The output
of this approach is used for accurately interpreting kinematical data of
flexion-extension motion, which particularly leads to an efficient overall
similarity visualization across several motion sequences in order to differen-
tiate among several cases and states (Fig. 3.11b, see Sec. 5.5.2). Additionally,
this also allows for an accurate analysis of the helical axes in terms of bone
anatomy by using the anatomical visualization introduced above.

a) b)

Figure 3.11: a) Traditional type of visualization of motion sequences by using FHA
(source [218]), which makes difficult the analysis of overall differences.
b) Developed overall similarity visualization of helical axis data based
on IHA in terms of Lie algebra.

Organization and exploration of micro-scale data

The methodology of investigation and exploration by biologists when deal-
ing with mainly micro-scale data has been also analyzed. This methodology
of investigation is based on the formulation and validation of hypotheses
using the evidences found in the data obtained in their experiments tak-
ing into consideration the established knowledge. However, the traditional
exploration methodology does not facilitate this task, as the current work
procedure for analysis mainly uses isolated visualization tools, avoiding
to have the complete picture. The process of data collection and analysis
is typically executed manually involving several steps, being extremely
time-consuming. Data are stored in different machines as a stack of files,
and metadata are saved in spreadsheets or in own researcher notes.

In this work, efforts have been done in order to improve the biologists’
workflow for the investigation of micro-scale data (e.g. Fig. 3.12). Note
that extending this methodology, it also allows for an overall study of the
multi-scale data, capturing all information relevant of the involved domains
(see Sec. 4.6 for more details).

All the efforts towards those enhanced visualizations are encompassed
in the multi-scale visualization environment proposed in Secs. 3.2, 3.3.
Note that, in Fig. 3.12, changes due to osteoarthritis at micro-scale lead to
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Figure 3.12: Proposed visualization for the organization and exploration of micro-
scale data together with the scheme of cartilage degradation during
osteoarthritis.

alterations on the range of motion of the knee at behavioral scale [38]. Thus,
with all those intra-scale developments, the proposed general framework
for the study of multi-scale data is enriched.

3.6 aspects regarding the design of scientist-centered visu-
alization tools

The design of scientist-centered visualizations, i.e. adequate visualization
tools for scientists to gain insight from the data they explore, depends on
several aspects which have been proposed in the literature (c.f. Sec. 2.4).
These aspects have been taken into consideration in this work and encom-
pass: analysis of scientists’ requirements, evaluation of visualizations tools and a
coupled interaction.

The development of the different visualization tools has been performed
taking into consideration the demands and requirements of the scientist-
s/users following the same procedure: i) analysis of data and users’ require-
ments, ii) proposal of solutions and iii) evaluation. In the case of the design
of the multi-scale approach, the heterogeneity of data and the fields of the
users involved has required not only the understanding of the data to be
visualized, but also the identification of semantic and structural relations
inside a multi-scale data set. In addition, it has been considered important
to listen to the scientists – as authentic users of the tools – and query them
about their desires and intuition about the visualization outcome as well as
to know quickly their feedback during the development of the environment
with the help of a preliminary evaluation.
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Every visualization system is composed of two main components intrin-
sically connected: visualization and interaction systems (c.f. Sec. 2.5). In
this work, the design of the visualization system has followed a common
strategy with interaction: a natural interaction consistent with visualization.
The aim has been to provide a human-computer interface that is perceived
by the user to be compliant and coherent with the visualization sytem,
facilitating them to gain insight from the data to explore. Thus, the ap-
proach towards the exploration of biomedical data in this work makes use
of Virtual Reality (VR) techniques, such as 3D stereographic visualization,
which also contribute to the design of scientist/user-centered visualizations.

Analysis of scientists’ requirements

A visualization requirement analysis has been initially performed. Its aim
has been to identify relevant aspects for the development of the multi-scale
visualization environment from the perspective of the users that would use
the system. This analysis has included the technical specification of data as
well as wishes about the common multi-scale visualization environment.

The specification of data has included identification of devices, data
and formats. A brief classification of the data is depicted in Table 3.3. The
variability of data from multiple modalities in different biological scales
has led to decide on features of the visualization platform, which should be
light-weight, modular and plugin-based, consisting of several subsystems
that exchange data via files.

Table 3.3: Classification of the data according to the scale and biomedical domain
involved.

Scenario: study of a knee joint multi-scale data set

Scale Molecular/cellular
(Micro-scale)

Organic
(Medium-scale)

Behavioral
(Macro-scale)

Examples of data Histological images,
micro-CT, mechanical
properties

PET, MRI, CT,
segmentations

Gait pattern, EMG
data, kinematical data
for helical axes

Biomedical domain Biology, tissue
engineering

Radiology Biomechanical
engineering

Regarding the considerations about the multi-scale visualization environ-
ment, the collection of information was performed by a written query. The
results have shown that there are two repeated main requests, which trans-
lating them to the vocabulary of the visualization field can be expressed as
follows:

• Need for a tight integration not only scientific image visualization but
also scientific visualization with information visualization.

• Need of highlighting partial information inside scientific visualization
(like segments, relations between elements).
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Those aspects have constituted a ground base for the design and de-
velopment of the multi-scale environment, which have been taken into
consideration for the approach proposed in Secs. 3.2,3.3.

Evaluation of visualizations tools

Following up with the analysis of the visualization requirements from the
user’s perspective, a preliminary evaluation of the multi-scale visualization
environment was performed during an initial phase of the development
(see Sec. 4.7, summarized and published in [192]). The aim of this analysis
was to find out if the direction of the proposed approach for the visual-
ization environment was appropriate. To this aim, the opinion of users
after performing several tasks related to the exploration of multi-scale data
in different scenarios was taken into consideration. The analysis had the
following features:

• Participants belonged to the domains which were addressed in the
design of the system, comprising users from the fields of computer
graphics, physics and biomechanical engineering.

• During each scenario, participants were asked to perform tasks close
to the real application. These tasks were related to the exploration of
a (multi-scale) set of knee joint related data, therefore involving both
data used on a daily basis as well as unfamiliar data.

• The aim of this preliminary evaluation was to analyze to what extent
the proposed visualization features for the exploration of multi-scale
data were comfortable to the user with respect to some traditional
methods generally used (see Sec. 4.7 for further details).

Regarding the enhanced visualizations, a continuous evaluation of the
tools has been performed during tight collaboration periods with specialists
of the respective domains.

Coupled interaction

The analysis of the multi-scale data has indicated that the most acquired
biomedical data have a 3D representation by means of volumetric objects. A
natural way to interact with those objects is to make use of actions with the
hands in order to adjust the view for their optimal observation, i.e. natural
hand manipulation in order to rotate the objects or move them closer to
gather information from different sides and distances. Therefore, a common
strategy of the visualization and interaction approaches has been required in
order to mimic these natural strategies for a more intuitive and user friendly
data exploration. The proposed approach works towards an exploration of
biomedical data employing a combination of 3D stereographic visualization
and natural interaction.

The multi-scale visualization scene makes use of an immersive 3D multi-
layered environment (c.f. Sec. 3.2), in which the representation of data is in



3.6 design of scientist-centered visualization tools 87

the form of nodes displaying 3D content without the traditional GUI. In this
environment, the proposed interaction with the data is mainly by means
of natural hand manipulation, therefore reducing users’ needs for high
demands of learning how to interact with data by using devices [191, 192].

a) b)

Figure 3.13: Coupled interaction: a) Hand gestures interact with nodes in the multi-
scale environment. b) Haptic interaction [82] and exploration of CT
data of knee joint.

A multimodal interaction method has been proposed for the interaction
with the multi-scale visualization environment [191, 192]. This method
constitutes an approach that integrates interfaces with different interaction
qualities, similarly to the way humans communicate (c.f. Sec. 2.5.2.2). In
this case, the multimodal interaction method involves a synergy of hand
gestures, haptic interaction and traditional means of human-machine com-
munication.

• Hand gesture interaction allows the manipulation of the nodes in
the multi-scale environment. Several actions can be performed, e.g.
a user grasping and moving the hand will move the grasped nodes
(Fig. 3.13a).

• Haptic interaction (c.f. Sec. 2.5.2.1) allows the exploration of biomedi-
cal data while being able to feel underlying structures through a force
feedback loop (e.g. Fig. 3.13b).

• Traditional interaction (i.e. mouse and keyboard) is ultimately allowed
in order to prevent a lack of interaction tangibility due to unforeseen
unavailability of the other interaction interfaces.

Note that the design, development and evaluation of the multimodal
interaction system are not the scope of this work. Extended details of those
features can be found in the work titled "Multimodal interaction with an
integrated visualization system for the analysis of multiscale biomedical
data", authored by J. Rzepecki [191]. A brief summary is described for
completeness at the end of Chapter 4 (Sec. 4.9).





4
M U LT I - S C A L E V I S U A L I Z AT I O N E N V I R O N M E N T

The aim of this chapter is to describe the design and implementation of a
multi-scale visualization system that enables the exploration of biomedical
data related to diseases of multi-scale nature, focusing on the example
of musculoskeletal diseases. This development (Table 4.1) addresses the
importance of all spatial scales involved and emphasizes the relationships
among data sets, combining techniques coming from SciVis and InfoVis
fields in order to present realistic visualization of data sets as well as vi-
sual abstractions based on the relations of the data . The creation of the
visualization scene including semantic aids among data sets is supported
by knowledge formalization applied to the multi-scale scenario. Important
aspects considered for the design of the environment have been the anal-
ysis of scientists’ requirements, a preliminary evaluation of the proposed
exploration features and a coupled interaction.

4.1 introduction

An analysis of the biomedical data required for the study of musculoskeletal
diseases has been initially performed. During this analysis, it has been found
that for such a study an heterogeneous set of data sets is required, demand-
ing both multimodal and multi-scale visualization needs (c.f. Sec. 2.3.2). The
performed analysis has led to carry out the classification of data according
to the related spatial scale, the visualization properties, and the user profile
which specially is interested in, described in Sec. 4.2.

Table 4.1: Multi-scale visualization environment: Conventional approach vs. pro-
posed approach.

Exploration features Conventional approach
(c.f. Table 2.1)

Proposed approach

Representation of data sets
based on

Tree list structure Nodes displaying data sets

Visualization scenario Flat desktop 3D workspace

Superposition of data sets Overlapping Overlaying

Focus and Context technique Preserving spatial dimensions
(placeholders)

Multilayered workspace with
non-linear depth

Visual semantic means among
data sets

None: inferred by the
experience of users

Visual links thanks to an
underlying ontology

Visualization techniques Usually either InfoVis or SciVis Combined InfoVis and Scivis
via visual links

Rendering of data sets Single data sets Multiple data sets

Amount of rendered data sets Few Many, by distributed rendering

89
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The criticism found in the literature regarding the current multi-scale
visualizations (c.f. Sec. 2.7) has motivated the design and development of a
novel multi-scale visualization approach addressing the importance of all
scales and emphasizing the relationships among data sets (c.f. Sec. 3.2). De-
tails of the visual features of the visualization environment are described
in Sec. 4.3.

The heterogeneity of the data sets and the consequent need to provide
semantically relevant information has led to the exploitation of knowledge
technologies. Ontologies can efficiently store biomedical knowledge and
supply such semantic information, but the traditional visualization used for
their representation, focused on the representation of information at a con-
ceptual level, is not enough to provide a realistic and interactive exploration
of data (c.f. Sec. 2.6). The proposed approach combining the exploratory sys-
tem and the multi-scale ontology [13] controls the presentation of the data
to appear in the visualization environment (c.f. Sec. 3.4). Details of the sup-
port of visualization based on knowledge formalization are explained in
Sec. 4.4.

The multi-scale visualization environment requires a coupled interaction
in order to obtain a resulting tool that facilitates the exploration process (c.f.
Sec. 2.5). The aim of the interaction system is to provide a human-computer
interface that is perceived by the user to be compliant and coherent with
the visualization sytem, facilitating them to gain insight from the data to
explore. To this aim, the multi-scale visualization environment employs a
combination of 3D stereographic visualization and multimodal interaction
[192], involving a synergy of hand gestures, haptic interaction and tradi-
tional means. A brief summary of the solution adopted for the multi-scale
visualization environment is outlined in Sec. 4.9.

Next, details regarding the architecture and implementation of the over-
all exploratory system (Fig. 4.1) are indicated in Sec. 4.5, focusing on the
visualization environment and the support of visualization based on knowl-
edge formalization. The implementation of the visualization environment
uses a distributed rendering scheme accesing network resources in order to

Figure 4.1: Big picture of the overall exploratory system.
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make feasible the presentation of all data sets in a single view. The support
of visualization based on knowledge formalization requires information
from the multi-scale ontology to be extracted and processed in order to
render the visualization scene.

An example of use of the system is presented in Sec. 4.6. Concretely, the
proposed exploratory system is presented in a case of a biologist investi-
gating osteoarthritis at the knee joint. In effect, specialists from different
domains (biomechanical engineering, radiology and tissue engineering)
contribute with their data and expertise. The set of data sets fulfils both the
multimodal and multi-scale requirements: They belong to different spatial
scales (cellular, organic and behavior scales) and have different visualization
properties (adequate to be represented with SciVis or InfoVis techniques).
The proposed framework allows a direct and meaningful exploration of
all related data sets of interest to the biologist. The use of the system in
this example is demonstrated by employing data sets of multi-scale nature,
described in Table A.1. Note that those data sets do not correspond to the same
patient, but serve for illustration purposes.

In order to know the feedback about the multi-scale environment by
potential users, a preliminary evaluation was performed [192] and its
description is extended in Sec. 4.7. An experiment involving scientists from
the fields addressed in the design of the system was conducted in order to
find out the user comfort with the visualization features of the proposed
approach. This section includes the protocol, the data analysis and the
results of this evaluation.

Finally, a discussion regarding the multi-scale visualization environment
introducing additionally other considerations is presented in Sec. 4.8.

Note: The multi-scale environment constitutes a complex system which
has been developed jointly by J. Rzepecki and the author of this thesis
in the context of the MultiScaleHuman Project (interdisciplinary training
network supported by the EU Marie Curie actions) [15]. The parts regard-
ing classification of data, design of visualization environment, support of
visualization based on knowledge formalization as well as the example of
use are primary work performed by the author of this thesis [149, 35, 150].
The architecture, development as well as the performed evaluation of the
system has been coauthored with J. Rzepecki [192]. The multimodal in-
teraction system, which has been outlined in this thesis for completeness,
is work of J. Rzepecki. Extended details can be found in the work titled
"Multimodal interaction with an integrated visualization system for the
analysis of multiscale biomedical data" [191].

The multi-scale ontology [13] has been developed by IMATI within the
framework of the MultiScaleHuman Project [15]. The introduction of the
visualization components into the multi-scale ontology and its application
to uses related to the musculoskeletal diseases analysis, allowing its use
for customizing and supplying semantic means in the presentation of
the biomedical data sets within the multi-scale visualization environment
[35, 150], has been the contribution of the author of this thesis. Note that
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extended details of the features of the multi-scale ontology system [13] are
not the scope of this work. They can be found in the work titled "Multi-scale
biological knowledge formalization: definition, properties, and applications"
[34].

4.2 classification of data

The analysis of the technical specification of the data for the analysis of mus-
culoskeletal diseases has found that an in-depth analysis of such diseases
requires a large heterogeneity of data from different medical specialties.

The gathered data sets are not only acquired from different acquisition
modalities (e.g. CT, MRI, gait pattern analysis), but are also distributed
over multiple spatial scales (from data acquired or processed at ranges of
micrometer to meter). They have several levels of abstraction, which lead
to different grades of suitability to be represented by the large number of
existing visualization techniques (e.g. volumetric representations, graphs or
diagrams).

In addition, the analysis of all those data involves scientists from differ-
ent domains, who contribute with their data and expertise. They usually
work on individual features involving a concrete domain and spatial scale,
contributing for the analysis of the multi-scale pathology. Examples of
sources of data under investigation, devices used and domains involved are
depicted in Fig. 4.2.

Figure 4.2: Example of scales, domains, devices and data sets involved in the study
of musculoskeletal diseases.

The illustrated data sets range from a cross-sectional histology of the
meniscus at the cellular scale, to graphics associated to the motion pat-
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tern of the knee at the behavior scale, with data on the organic scale in
between, e.g. PET/MRI images, and their segmentations. Note that these
examples have different levels of abstraction and diverse representation tech-
niques. Physical data (e.g. PET/MRI, CT) are traditionally the focus of SciVis
techniques (c.f. Sec. 2.1.3.1); and nonphysical, abstract data (e.g. meniscus
properties, hierarchies, and statistical data) are more suitable for InfoVis
(c.f. Sec. 2.1.3.2). Different specialists (e.g. tissue engineers, radiologists,
biomechanical engineers) contribute for the exploration of musculoskeletal
diseases by acquiring and analyzing data of a specific scale.

Data have been collected and analyzed in the framework of the MultiScale-
Human Project [15], in which specialists of the aforementioned domains
have shared knowledge and data sets for this work. The development of the
multi-scale visualization environment has been performed in order for these
kind of specialists to be able to use the system for exploring multi-scale
data. A complete list of the multi-scale data sets employed in this work is
found in Table A.1.

Biological data sets have been classified according to their scale of data,
visualization suitability. Scale of data classiffies data acquired or derived
from different spatiotemporal ranges. Visualization suitability is the appro-
priateness of a given data set to be represented by using a concrete SciVis
or InfoVis technique. In addition, user profile saves the main scale of interest
of the specialist (Table 4.2):

• Scale of data: Four scales have been considered:

– Micro-scale: Data acquired or derived from images whose pixel
size ranges in the micrometer range, e.g. micro-CT , histological
images, and mechanical properties of cartilage.

– Medium-scale: (Medium: from Latin, the middle, center, i.e. inter-
mediate scale). Data acquired or segmentations obtained from
PET, MRI, CT imaging techniques.

– Macro-scale: Data acquired and processed from the gait pattern
analysis, which correspond to the highest spatial range.

– Abstract scale: This scale encompasses all the nonspatiotemporal
knowledge which cannot be directly implied from one of the pre-
vious scales. Those data include anatomical structure, relations
between evidences in a multi-scale pathology or other derived
knowledge.

• Visualization suitability: Appropriateness of data to be represented by
using a concrete InfoVis or SciVis technique, measured according to
the standard representation used by the specialists. For example, MRI
is suitable for volume rendering - SciVis technique, the joint angle
evolution in a gait pattern is suitable with a graph - InfoVis technique.
Note that the abstract scale data are represented mainly by InfoVis
techniques. Semantic relations and their structures have not inherently
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a spatial representation and therefore it is necessary to supply it, e.g.
by making use of tree or node-and link visualizations (c.f. Sec. 2.1.3.2).

Table 4.2: Classification of the data with respect to scale of data, visualization suitabil-
ity and user profiles.

Visualization
suitability /
Scale of data

SciVis technique InfoVis
technique

User profile

Micro-scale Molecular and
histological
images, micro-CT

Properties
extracted at
molecular, cellular
and tissue level

Tissue engineer

Medium-scale PET, MRI, CT and
segmentations

Radiologist

Macro-scale Gait pattern
animation,
original video
sequence, helical
axes of knee joint
motion

Gait pattern
graphics, e.g. joint
angles, EMG
signals

Biomechanical
engineer

Abstract scale - Anatomical
structure, relation
among evidences,
other derived
knowledge

Computer
scientist, Generic

The importance of the visualization suitability has emerged during the
written query to the specialists (c.f. Sec. 3.6) regarding their wishes and
considerations for a multi-scale environment. In such a query, specialists
highlighted the need for a tight integration of scientific visualization with
information visualization. Therefore it has been important to identify the
data sets according to the visualization suitability.

Different kinds of specialists contribute with their data and expertise to
the exploration of musculoskeletal diseases. All of them have their own user
profile in the multi-scale environment. Thus, the users fall into five main
groups, depending on their field or medical specialty:

• Radiologist,

• tissue engineer,

• biomechanical engineer,

• computer scientist, or

• generic.
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The first three types of users contribute to the environment by supplying
data of a specific scale. The computer scientist organizes the information
and has an important role in the multi-scale visualization as well as in
the inference of abstract knowledge. Generic is the profile of a physician
interested in an overall view. The use of user profiles is required to reach
the scientist-centered visualizations. The visualization environment has
to satisfy not only the integration of data of any nature, but also the
customization of the view according to the level of interest in a given data
set of the user - scientist.

The aforementioned parameters, encoded in the multi-scale ontology (see
Sec. 4.4), allow the positioning of the multi-scale data on the visualization
scene in a suitable way according to their visualization properties as well as
the user interests (see next section).

4.3 visualization environment

The proposed approach of visualization environment is based on the data
sets as main actors. Each data set is encapsulated in a node which has a
geometric shape as a hollow cube or half-sphere. The data set is presented
inside the node with the most suitable visualization technique, indepen-
dently of its SciVis or InfoVis nature, allowing for a consistent representation
(Fig. 4.3).

Figure 4.3: Diverse examples of representation of data sets by means of nodes,
according to the most suitable visualization technique encoded in the
visualization suitability parameter.

Those nodes are distributed in a 3D multilayered environment, allowing for
a direct exploration of all the data. Nodes provide perceptually semantic
means to understand information contained in the nodes as well as their
relationships. Visual cues play an important role in the presentation of
relations among data sets. Thus, the nodes are positioned on one of these
layers and are connected through visual links:

• The 3D multilayered environment is composed of layers whose distance
between each other is uniform. The layers, distinguished by their z-
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order, are focus, context and background (Fig. 4.4). They group the nodes
with the same spatial scale, i.e. data from each spatial scale (i.e. micro,
medium and macro) are positioned on one of these layers.

– Focus constitutes the main scale of interest of the user. Data sets
with InfoVis and SciVis suitabilities are linked and visualized on
the foreground.

– Context is placed behind and aims to provide context to the data
on the focus layer with data coming from a contiguous spatial
scale.

– Background is the last layer, and completes the general view across
all the spatial ranges.

Figure 4.4: Focus, context and background layers.

This approach allows the data sets to be presented and explored
independently of their spatial dimensions, alleviating the differences
in the order of magnitude of data.

• Visual links between nodes represent semantic relations across data
sets, extracted by the abstract scale provided by the multi-scale ontology.
These visual cues can take different forms by means of arrows.

The position of the nodes on these layers depends on the main scale of
the user profile. Given the main scale for the user, the nodes corresponding
to this scale are positioned on the focus layer, containing either SciVis or
InfoVis data for the scale. The integration of the adjacent scales depends
on their spatial proximity. Data belonging to the most adjacent scale is
positioned on the context layer, and the data of the furthest scale is placed
on the background layer.

The 3D multilayered environment is realized in a form of a thin-client
based on the Unity software framework [104]. Unity is a cross-platform
game engine with a built-in integrated development environment (IDE) for
the development of visualization scenes. Each scene is composed of objects
(e.g. camera, light, or every visible geometrical shape) which are configured
by adding components and setting their properties to the appropriate values.
The scripting of such configuration has been developed in C#.
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Figure 4.5: Examples of TemporalNode, Arrow and ImageNode in the Unity IDE and
in the final scene.

The most representative objects in this environment are nodes and arrows
(Fig. 4.5):

• Node: It contains an encapsulated data set. Physical appearance of
those nodes can be hollow cube or half-sphere meshes (Fig. 4.6). The
concrete selection of the shape will depend on the application (see
Sec. 4.8). Node constitutes a super class for the following types of
nodes:

– ImageNode contains an encapsulated image.

– SetImageNode contains a set of superimposed images, e.g. a set of
histological images. Automatically or by interaction, the image
can be changed to the next one.

– 3DNode encapsulates data for volume visualization, e.g. CT of
knee joint.

– InfoVisNode contains InfoVis data (e.g. gait pattern graphics).
Graphs values can be interactivelly explored.

Figure 4.6: Different physical appearances of nodes: hollow cube and half-sphere.
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– TemporalNode contains a data set which has temporal dimension
(e.g. video of motion capture). The node incorporates means to
modify the speed of the representation.

• Arrow relates nodes. By using a mesh developed under the appearance
of an arrow, it creates a relationship between the two nodes indicated.

Each of these objects have been developed in Unity3D by means of prefabs.
A prefab acts a template from which new object instances can be created in
the same scene. In such objects, the data sets already rendered by means of
a distributed rendering system are inserted (see Sec. 4.5).

The creation of the scene, i.e. selection of the rendering worker entity
to render a data set, positioning of nodes on the layers as well as arrows
between nodes, is dynamically performed, and described in Sec. 4.5. The
properties for the creation of the visualization scene are extracted from the
ontology which supports the visualization (see next section).

4.4 support of visualization based on knowledge formaliza-
tion

The proposed framework combining the exploratory system and the multi-
scale ontology [13] (c.f. Sec. 3.4) controls the presentation of the data to
appear in the multi-scale visualization environment. The multi-scale ontol-
ogy leverages the multi-scale biomedical knowledge, which encodes the
aforementioned parameters which classify the data (c.f. Sec. 4.2), as well as
others (e.g. location of resources, pathological relations among data sets...).
The information from the multi-scale ontology will subsequently allow the
extraction of the necessary visualization parameters for the creation and
customization of the visualization scene (see Sec. 4.5).

In the following subsections, the support provided by knowledge for-
malization is described. First, the multi-scale knowledge is defined, which
contains information regarding the biomedical domains that study mus-
culoskeletal articulation of a human body and the related musculoskeletal
diseases. This knowledge is formalized and encoded by means of the
multi-scale ontology, which focuses on the multi-scale degradation process
features occuring at different scales. Third, the extraction of information
by means of queries to the ontology determines semantically relevant data
and information for the multi-scale visualization environment. Finally, the
knowledge formalization support is demonstrated in an example related to
the musculoskeletal diseases.

Multi-scale biomedical knowledge

The knowledge to be formalized focuses in this context on biomedical
domains that study musculoskeletal articulation of a human body and
related musculoskeletal diseases, restricted to the region around the knee.
The multi-scale biomedical knowledge serves as medical data repository and
framework for storing common knowledge [35, 149]:
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• As a digital patient medical record, the multi-scale biomedical knowl-
edge documents a medical case in which a patient underwent an
operation on meniscus in a knee. Thus, it contains personal data (e.g.
patient ID, sex, birthdate) as well as a plethora of information from
different acquisition sessions and analysis. For instance, they can be
the stack of MRI images before and after surgery, detailed information
about the mechanical properties of the meniscus, a history of the gait
pattern both pre- and post-operative as well as a simulation model of
the knee articulation. All these data come from different spatial scales
(cellular, molecular, organic, behavior) and reside in the multi-scale
biomedical knowledge.

• The multi-scale biomedical knowledge also contains generic knowl-
edge that is necessary for diagnostics and follow up reports, e.g. from
biomedical domains such as tissue engineering, radiology and biome-
chanical engineering. The knowledge can be generic (e.g. anatomy) or
established from given facts. A typical example would be the fact that
bone erosion caused a pathology that resulted in an abnormal gait pat-
tern. This knowledge serves as a common framework for knowledge
discovery among different medical specialists working simultaneously
on the same medical case.

The users of the multi-scale biomedical knowledge fall into the 5

main groups already indicated: generic, radiologist, tissue engineer,
biomechanical engineer, and computer scientist. Different users have
different levels of interest in these data. For example, a radiologist is
more interested in studying MRI images, a tissue engineer in studying
mechanical properties of the meniscus, and a biomedical engineer
specialized in human motion in analyzing the gait pattern.

The representation of the multi-scale biomedical knowledge requires
techniques coming from both subfields SciVis and InfoVis (c.f. Sec. 2.1.3).
InfoVis techniques cover derived knowledge, anatomical structure,
comparison and diagnosis procedures; while SciVis focuses on physi-
cal acquisitions.

In this context, note that the visualization field also collaborates towards
the analysis of the multi-scale data sets. Thus, this information is also
included in the generic common knowledge. Clear examples are the
suitability of visualization techniques of the multi-scale data and levels
of users’ interest in those data, used for the creation and customization
of the scene in the multi-scale environment.

Multi-scale ontology

The formalization of the aforementioned multi-scale biomedical knowledge
is encoded in the multi-scale ontology [13], which acts as a driver for data
management. Thus, the ontology formalizes relationships between multi-
scale data, patients, techniques, user profiles and relevant visualization
parameters. The general structure of the ontology focuses on multi-scale
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degradation process features occuring at different scales. A general overview
of the multi-scale ontology applied to the multi-scale visualization environ-
ment [35] is represented in Fig. 4.7.

Figure 4.7: Graph representation of the multi-scale ontology (source [35]).

The representation of the ontology [35] is given by means of a labelled
directed graph G = {V ,E}, where nodes (V = {C, I}) are concepts (C) and
instances (I) of concepts, and edges E = {R, is a}. R are relations between
instances and "is a" represents a relation between instances and concepts. G
is labeled with l : V 7→ L, which maps nodes to the corresponding labels (L,
labels of concepts, individuals and relations).

Concepts (C) include:

• Patient: Subject identifier.

• Data: Data set identifier (e.g. resource location).

• Spatiotemporal scale: Its instances (I) can be "micro-scale", "medium-
scale", "macro-scale" or "abstract scale" (c.f. Sec. 4.2).

• Visualization technique: The appropriate technique to be used for the
representation of a concrete data set (c.f. Sec. 4.2).

• User profile: Its instances can be "Radiologist", "Tissue engineer",
"Biomechanical engineer", "Computer scientist", or "Generic" (c.f.
Sec. 4.2).

• Degradation Process Feature (DPF): Characteristic evidenced in a
pathology. For example, instances of a DPF in a musculoskeletal
disease can be "Cellular change", "Loss of biomechanical function",
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Figure 4.8: Instances of degradation process feature (source [35]).

"MRI evidence"" and "Alteration in gait pattern". Those instances are
represented as a graph in Fig. 4.8.

• Source of evidence (SOE): Origin that reveals a DPF. For example,
"Joint stiffness" and "Joint weakness" are instances of SOE. They evi-
dence the DPF "Alteration in gait pattern".

• Technique: Procedure which obtains a data set and measures a SOE.
For example, "EMG" (i.e. electromyography) is a technique, and is
used for the measurement of the SOE "Joint stiffness".

The last three concepts listed fundamentally formalizes the propaga-
tion of degradation process features in hierarchical pathologies. Thus,
multi-scale DPFs that may cause one another DPF (cause, caused−1 ∈ R),
are evidenced (evidenced ∈ R) by SOEs which in turn are measured
(measured ∈ R) by different techniques. For a complete example, see
Sec. 4.6.

Implementation and use

The extraction of information from the multi-scale ontology supports the
presentation of the data in the multi-scale environment. In this approach,
exploiting a graph representation of the ontology, relevant items are iden-
tified as results of queries to the ontology. In the following, the overall
process starting from the generation of the ontology until the extraction of
information for the multi-scale environment is briefly described [150]:

• First, multi-scale biomedical knowledge is encoded in an ontology [13], im-
plemented in OWL [45]. It stores initially common knowledge consisting
of:

– Conceptual hierarchies, e.g. human anatomy, patient information,
data, acquisition techniques, visualization properties, degrada-
tion process features and sources of evidence.

– Relations between these concepts: patients undergoing acquisi-
tions sessions, causal relationships between DPFs. The causality
previously indicated between DPF and SOE is modeled as OWL
axioms, which allows to interconnect concepts.
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• Second, the ontology performs the management of data. The ontology
starts to act as a medical data repository by instantiating the corre-
sponding classes of the ontology. This allows to record systematically
the knowledge and data about a given patient, e.g. the undergone
acquisitions, the acquisitions protocols indicating which acquisition
sessions were performed, the data sets which were acquired and the
anatomical entities they represent, and relations of data sets to sources
of evidence which they hint to.

• Third, semantic querying is performed to obtain information from the
ontology. SPARQL (SPARQL Protocol and RDF Query Language) is
an ontology querying language, which uses graph pattern matching
techniques to evaluate answers [172, 194]. Another variant is to trans-
form the populated ontology into a directed graph and then extract
context information by using graph traversal techniques starting from
the seed node provided by the user [150]. Finally, the graph repre-
sentation of the query contains nodes instances as well as inferred
relations between them.

Queries to the ontology can retrieve all the relevant information of a
given patient for the representation in the visualization environment.
Examples (expressed in English language) are "Which are all the Data
that concern a specific patient?"), and the techniques used ("Which is
the technique that obtains specific Data?"). For a complete illustrative
example, see the next subsection.

Note that extended details of the features of the multi-scale ontology
system are not the scope of this work. They can be found in the
work titled "Multi-scale biological knowledge formalization: definition,
properties, and applications" [34].

• Finally, the exploratory system carries out the obtaining of requests
for the visualization composition. Answers to queries are represented
as subgraphs, and are encoded as JSON documents (Fig. 4.9) [33].
They are served to the exploratory system in order to create the
visualization scene (more details in Sec. 4.5).

Example

The support provided by the ontology allows for obtaining all necessary
visualization parameters for positioning the different spatiotemporal data
sets on the scene and their proper representation. Examples of those queries
related to visualization (expressed in English language) are "In which
Spatiotemporal scale a given DPF is placed?", "Which Visualization technique
visualizes the given Data?"). Accordingly, in the visualization environment,
the data sets are positioned on the corresponding layer and rendered by a
concrete rendering worker type (c.f. Sec. 4.3).

In order to illustrate this support, consider that the knowledge depicted
in Fig. 4.10 is formalized, as described previously in this section (c.f. Fig. 4.7).
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Figure 4.9: JSON representation of answer to the query (source [150]).

This figure represents some factors involved in the degradation of articular
cartilage during osteoarthritis. As indicated previously, each DPF is evi-
denced by SOEs and those are measured by certain techniques. The data
are also classified according its spatiotemporal scale.

Subsequently, data regarding a patient is provided to the ontology. For
instance, "Patient 231086" has undergone different acquision sessions (e.g.
MRI, gait pattern) and different analyses have been performed (e.g. molecu-
lar, celular and tissue analyses of his damaged meniscus). The techniques
used to obtain the data are:

• Knee angle patterns during gait analysis.

• EMG during gait analysis.

• MRI scanning.

• Nano-indentation of cartilage of meniscus.

• Histological analysis of cartilage.

• Live/Dead cell analysis, for analyzing the metabolic activity.

• Polymerase chain reaction (PCR), for analyzing the gene profile, at
molecular level.

Figure 4.10 indicates the SOEs measured with the aforementioned tech-
niques, the DPFs evidenced with such SOEs, as well as the spatiotemporal
scales in which those DPFs take place. For example, an excerpt of the multi-
scale knowledge is expressed in English as: "Patient 231086 is a patient
which concerns the following Data: MRI 231086, EMG231086, KneeAn-
gle231086, Histology231086...".

The query expressed in English as: "Which are all the Data that con-
cerns Patient 231086?" is expressed in SPARQL, which evaluates queries
by using graph pattern matching techniques (Fig. 4.11) [172]. The results
of these queries are used to identify semantically relevant items to support
visualization, shown in [35].
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Figure 4.10: Some factors involved in the degradation of articular cartilage during
osteoarthritis. Each DPF is placed on a corresponding spatiotemporal
scale, and is evidenced by several SOEs, which are measured by certain
technique (source [35]).

Figure 4.11: SPARQL evaluation of the query "Which are all the Data that concerns
Patient 231086?" (source A. Agibetov in the context of [35]).

Figure 4.11 is an example of a graph pattern match from the "Query
graph" to the "Knowledge Base graph". Note that bound variables were
matched exactly ones and to the nodes with the same value. Also note that
since the variable "?data" is unbound, then it could be matched to any of
the "Knee Angle 231086", "EMG231086", "MRI231086", "Histology231086".
Therefore there are four possible pattern matches. By means of this illus-
trative query, all the data regarding the patient have been retrieved for its
visualization.
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Consider a visualization scene of representing data of the patient "Patient
231086" by a user with the "Tissue Engineer" profile. In the following,
queries are analogously matched and their visual results are presented
during the visualization scene composition.

First, the data of the patient is obtained, as detailed above (Fig. 4.12).
Next, the visualization techniques of the data are obtained (Fig. 4.13),
therefore allowing the visualization system to process their presentation.
Figures 4.14- 4.16 illustrate the obtaining of the corresponding SOE and
DPF related to each data set, moving upward in the conceptual hierarchy
by means of the relations of the ontology among these concepts depicted
in Fig. 4.10. Subsequently, the spatiotemporal scale related to each data
set is obtained. Thus, the visualization system can place the respective
data sets on diferent layers, as described in Sec. 4.3. As the user profile
is "Tissue Engineer", the focus layer is the micro-scale, the context layer
corresponds with medium-scale and the background is the macro-scale.
Finally, Figs. 4.17- 4.19 introduce by means of arrows the relations between
the sources of evidences which proof the different cartilage degradation
process features represented by the available data sets.

Figure 4.12: 1. - Which are all the data that concerns Patient 231086? (source [35])

Figure 4.13: 2. - For the previously obtained data, what are the visualization
techniques which visualize them? (source [35])
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Figure 4.14: 3. - By which technique were the data in question obtained?
(technique accordingly to Fig. 4.10) (source [35])

Figure 4.15: 4. - For the previously evaluated techniques, which SOEs did they mea-
sure? And for those SOEs, which DPFs did they evidence? (source [35])

Figure 4.16: 5. - For the obtained DPFs, which are the spatiotemporal
scales they are placed? (source [35])
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Figure 4.17: 6. - Filter only those DPFs that are of interest for a "Tissue
Engineer" (source [35]).

Figure 4.18: 7. - Extract the relationships "causes" between SOEs (c.f. Fig. 4.7)
(source [35]).

Figure 4.19: 8. - Extract the relationships "causes" between DPFs (c.f. Fig. 4.7)
(source [35]).
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4.5 architecture

The overall exploratory system is specifically designed to be used by sev-
eral users working remotely with large amounts of biomedical data. Its
underlying architecture addresses portability and multi-platform design
requirements as well as network data transfer (streaming and caching)
[192]. The distributed rendering scheme and the interconnection with the
multi-scale ontology allows the subsequent composition of the visualization
scene.

Overall architecture

The visualization environment accesses various network resources in order
to provide the scene to the user. In order to perform the composition of the
scene, the system connects with the multi-scale ontology, the data repository
and the distributed rendering system (Fig. 4.20).

Figure 4.20: Overall architecture.

The visualization environment system has been realized by means of a
thin client which connects network resources. Consequently, the system
can remain scalable with respect to an increasing number of simultaneous
users as well as with respect to the complexity of multi-scale data sets.
The visualization environment, developed under the multi-platform Unity
software framework [104], allows the user to employ it in different desktop
platforms or other devices.

Requests to the multi-scale ontology yield all relevant multi-scale biomed-
ical information (e.g. location of resources, visualization properties of re-
sources) of a biomedical case to present to the user (c.f. Sec. 4.4). Those
requests constitute the first step in order to create the visualization scene.

The distributed rendering system generates the visualization scene from
several data sets rendered on separate rendering worker entities. Thus, the
system is able to deal effectively with massive data sets. The visualization
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system connects to a rendering worker entity, which renders the data set
and sends it to the multi-scale environment.

The interaction system provides the multimodal interaction involving a
combination of hand gestures, haptic interaction and traditional input. It
constitutes a part of the exploratory environment and is described briefly
in Sec. 4.9.

Architecture of the exploratory system

In the following, the architecture of the exploratory system is described
more in detail (Fig. 4.21). The visualization environment system connects with
the multi-scale ontology through encrypted HTTPS protocol to ensure the
security of the connection. As a result of each query, a JSON document
is returned consisting of a list of data sets (each representing data from a
single acquisition) together with, among other properties, the corresponding
location of such resources in the data repository.

Figure 4.21: Architecture of the exploratory system.

Those data sets are going to be generated by means of the distributed
rendering system. Thus, the visualization environment connects to a rendering
worker entity, which acts as an active proxy between the visualization
environment (client) and the data repository. An appropriate rendering
worker according to the type of data set subsequently renders it and sends
it to the environment for the composition of the visualization scene.

Rendering workers can support different types of rendering (Fig. 4.22):

• 3D workers render volumetric representation of data sets. This group
of workers receive as input the location of resources and visualization
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Figure 4.22: Examples of renders performed by several rendering workers: STL
worker representing a part of the cartilage of meniscus, VTK worker
representing a knee joint, InfoVis worker representing the pore size
distribution of cartilage. Note that the background is going to be
transparent when inserting those renders in nodes.

and view parameters, and returns the image of the file already ren-
dered. Regarding their implementation, workers were developed by
employing the open-source toolkit VTK [23] for Cocoa (native API for
the OS X operating system) under the IDE XCode [26]. Three types of
3D workers have been developed so far:

– DICOM worker reads the format file standard in medical imaging
DICOM [28] and renders it. The worker is adapted for reading
the stack of files from CT, MRI and for performing the ray casting
algorithm.

– VTK worker reads and renders VTK file formats. Those formats
offer a consistent data representation scheme for a variety of data
set types, including texture and volumetric data [24].

– STL worker reads and renders the STL file format [20]. STL defines
the surface geometry of 3D objects, and is widely used for pro-
ducing models or prototypes in computer-aided manufacturing
and 3D printing.

• InfoVis workers render files with InfoVis content. It has been developed
under the InfoVis toolkit [78], and uses Chromium [2] as HTML
rendering engine.

• Other workers are Image, SetImage and Temporal workers, rendering
images, groups of them, and videos, respectively. These rendering
workers, which do not require extensive computational power in
comparison with the rendering of volumes, are directly integrated as
a part of the visualization client.

The central part of the architecture is the visualization environment (c.f.
Sec. 4.3). The decision to build upon the framework Unity was made in order
to address multi-platform and scalability challenges. Unity is well known
for its lightweightness, modularity and extendability [234]. In addition, the
portability between platforms favors the use of the system in whatever
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environment where the different users are, independently from operating
system (e.g. PC, Linux, Mac, iOS, Android) or hardware (e.g. 3D screen, 2D
screen, portable tablet devices).

Note the correspondence between the types of rendering workers here
described and the nodes - objects of the visualization environment (c.f.
Sec. 4.3). The nodes of the scene request the rendering and subsequently
encapsulate the results performed by the different rendering worker entities.
The nodes generate the request by means of an Uniform Resource Identifier
(URI) including location of resources and visualization properties (Code
4.1). With this approach, the visualization environment system does not
try to download massive data sets from the data repository and render it.
Instead, the processing power needed to render complex and large data
sets is parallelized between different rendering workers, which can run on
different machines.

scheme://host:port/path?query

http://localhost:8081/_stl/cartilage.stl?view_parameters;resolution_x;

resolution_y �
Code 4.1: Generic syntax of URI and application to a rendering request.

Following up with the description of the elements of Fig. 4.21, the task
manager monitors the use of rendering workers’ resources and balances
the load of rendering requests from the visualization environment. This is
especially relevant when interacting with contents. For instance, moving
or applying zoom-in on a content or several contents might imply new
renderings. Referring to the example depicted in Fig. 4.23, the manipulation
of a node in the scene causes the generation of hundreds of new URL

Figure 4.23: Rendering workers and visualization composition in the architecture
of the exploratory system.
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requests. This rendering is fast enough such that the user perceives an
effective interaction (c.f. Sec. 2.1.1).

The cache manager stores data that had been requested by rendering
workers before, in order to avoid the misuse of processing power. Data
repositories can be spread geographically, so that data are stored as close to
the rendering workers as possible, within the limit of the local area network,
in the way similar to web proxy servers.

Composition of the visualization scene

In the previous subsection, the description has been focused on the dis-
tributed rendering process in the exploratory system. However, parameters
which classify the data (c.f. Sec. 4.2) and have been saved in the multi-scale
ontology (c.f. Sec. 4.4) participate also in the creation of the visualization
scene (e.g. selection of the rendering technique, position of nodes on the
layers). In the following, the whole process of composition of the scene
from information obtained from the multi-scale ontology is described [150]
(schematically depicted in Fig. 4.24).

Figure 4.24: Process for the visualization composition (source [150]).

• Appearance of multi-scale data sets

Initially, the collected information from ontology in the JSON docu-
ment is visually displayed in the multi-scale visualization environment
by means of nodes or visual links (c.f. Sec. 4.3) according to the at-
tribute spatiotemporal scale. Data sets from micro-scale, medium-scale and
macro-scale have a visual representation as nodes. Those diverse nodes
encapsulate diverse types of data (2D, 3D, InfoVis...) consistently for a
simultaneous exploration of heterogeneous data. Each node has an
associated URI leading to a related data set, which is retrieved in the
data repository and requested to be rendered by a rendering worker
entity. On the other hand, information from the abstract scale can be
used for representing nodes or for the creation of perceptual cues in
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the relations between such nodes in order to enrich the understanding
of the complete collection of data. They can have a node represen-
tation, e.g. nodes with a neutral representation and a label are used
to represent anatomical entities, or an arrow representation which
links nodes in order to indicate semantic relations across data sets, e.g.
causes between SOEs and DPFs (Fig. 4.25). Examples for visual cues
include:

– Colored arrows between nodes indicate relations between nodes,
e.g. causes between SOEs in the cartilage degradation process.

– Tooltips provide additional information, e.g. on the acquisition
protocol performed to obtain the data set.

Figure 4.25: Extended view of the resulting visualization (source [150]).

• Selection of the rendering technique

Subsequently, data nodes are rendered by an appropriate rendering
worker entity (e.g. 3D, Infovis workers) according to the visualization
parameters. The visualization system identifies the visualization tech-
nique and settings to be used from the description of the data as
inferred from the ontology.

The obtaining of the visualization suitability of a given data set can
be defined by the mapping [150]:

(AP,PD,CP,DR) 7→ (VT ,S),

where the entries in the tuple on the left denote the acquisition proto-
col, the processed data, the calculated parameter values and the data
representation, respectively. Similarly, the tuple on the right hand side
denotes the visualization technique and settings.

For instance, in Fig. 4.25, the femoral cartilage thickness is visual-
ized as a manifold surface mesh obtained after processing a MRI
scan. Here DR=ManifoldSurfaceMesh and PR=CartilageThickness leads
to VT=VTKViewer and S=Colormap. Therefore, a VTK worker is em-
ployed with visual settings for using a color map to indicate thickness
in the cartilage.
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• Positioning of data sets

Finally, the visualization scene is created and nodes are positioned on
the multilayered environment (c.f. Sec. 4.3). The layers encompasses
nodes with the same spatial scale. The allocation of a node on a
layer depends on the spatiotemporal scale of the data set and the
interest of the user in that scale (attributes spatiotemporal scale and
user profile) (c.f. Sec. 4.4). Nodes on focus layer are visualized on the
foreground, constituting the main scale of interest for the user; nodes
on the context layer are placed behind, aiming to provide context to
the data on the focus layer; and nodes on the background complete
the general view across all the spatial ranges.

4.6 example of use: analysis of musculoskeletal diseases

The study of diseases affecting the musculoskeletal articulation, such as os-
teoarthritis of the knee joint, requires a challenging visualization of biomed-
ical data (c.f. Sec. 2.3.1), demanding both the multimodal and multi-scale
requirements (c.f. Sec. 2.3.2). Data are acquired from different acquisition
modalities and distributed over multiple spatial scales: The gathered data
sets can contain, among others, chondrocytes death analyses of the meniscus
(cellular scale), MRI and CT images of the knee joint (organic scale) and gait
pattern analyses (behavior scale). The data extracted from such acquisitions
has not only different spatial dimensions, but also diverse visualization
properties: Some of these are presented as 3D models, images or through
InfoVis representations, such as graphs or diagrams. The data collection and
analysis require experts from different specialties: Biomechanical engineers,
radiologists and tissue engineers contribute with their data and expertise.

The presentation and exploration of this plethora of information quickly
becomes complex for any specialist working on the biomedical case. First,
experts use isolated systems allowing only the exploration of features in-
volving a concrete specialty and scale but not the complete picture. Second,
the existing multimodal exploratory systems are based on traditional stan-
dard interfaces, which do not allow a flexible exploration of multi-scale
data. For instance, radiologists analyze the MRI by using 3D volumetric
viewers, and separately tissue engineers make use of data analysis tools.
And finally, specialists lack of an exploratory environment to efficiently
support the analysis of causality across evidences from different scales (c.f.
Secs. 2.3.3, 2.7).

The example focuses on the workflow of the biologist investigating os-
teoarthritis. Based on established knowledge about the pathology, the biolo-
gist formulates and validates hypotheses using the evidences obtained in
the experiments by means of quantitative methods and statistics. However,
the visualization employed during the traditional exploration methodology
(described later in this section) does not facilitate this task, as after per-
forming such experiments and statistical analyses, current visualizations
to explore data do not constitute an effective tool for the observation of
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the complete collection of evidences and results encompassing all the data
involved.

In the following sections, the example of use is described. First, the essen-
tial features of osteoarthritis are described. Second, the traditional method-
ology of investigation applied by biologists is summarized. Finally, the
aforementioned methodology will motivate the proposal for an integrated
exploratory system for automatizing the organization and exploration of
experimental data applied to the example [150].

Osteoarthritis as a multi-scale pathology

Osteoarthritis is an example of hierarchical pathology of multi-scale nature
(c.f. Sec. 2.3.2). Degradation features at the cellular level propagate upwards
through molecular, macromolecular, and tissue level, causing finally the
alteration in gait pattern [38, 88]. It firstly and mostly affects the articular
cartilage, causing its complete degeneration [88, 107].

Figure 4.26: Degradation of articular cartilage during osteoarthritis (source [150]).

The articular cartilage degradation during osteoarthritis is graphically
summarized in Fig. 4.26. Changes of the cellular behaviour (e.g. death
of chondrocytes, dedifferentiation and hypertrophy or catabolic/anabolic
reactivation) is a common feature of an osteoarthritic cartilage [141]. These
evidences can be obtained through analysis of cross-sectional histology
and cell viability assays [168]. The altered cellular behavior consequently
causes the loss of the biomechanical function, due to the disruption of the
macromolecular tissue network, which results in increased compressive
stiffness and eventually in the softening of the cartilage, evidenced by
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variations in the mechanical properties, e.g. by using nano-indentation
techniques. In more advanced phases the cartilage degradation can also
be observed on MRI as thinning and progressive loss of cartilage at the
organic scale. Finally, at the behavioral scale, this degenerative process
reaches the gait pattern [38], causing weakness or overactivation of certain
surrounded muscles, evidenced by electromyography (EMG). These facts
lead to variations of joint stiffness and range of motion of the knee.

Traditional methodology of exploration

Initially, the biologist speculates with a hypothesis regarding the osteoarthri-
tis and its cartilage degradation. An example could be the following [150]:
"The cytokine induced cell death and shift in metabolic activity will result
in the disruption of ECM integrity and inappropriate mechanical function
of the cartilage." Such a hypothesis requires the investigation on several in-
formation sources, and their established relationships have to be considered.
In the given example, the cell death has to be investigated on live/dead
and histological assays, while the degeneration of cartilage can be seen on
histology as well as on the MRI at the organic scale.

In order to analyze the validity of such a hypothesis, numerous acqui-
sition sessions are performed (e.g. MRI of lower extremity, and micro-CT
and cross-sectional histology of meniscus), producing a large amount of
multi-scale and multimodal data.

Figure 4.27: Examples of traditional methodology of exploration. At the top, acqui-
sition of micro-CT of meniscus (scanner SkyScan [19]), obtaining of
structural properties (with the software CTAn [3]) and visualization of
3D mesh model (Meshlab [11]). On the bottom, preparation of cartilage
slices, and acquisition and visualization of histological images. Those
both pipelines of different sources do not converge.

During the analysis of the acquired data, some data are processed (e.g.
segmentation of MRI scans for 3D reconstruction of bones), allowing for
obtaining several charaterization parameters (e.g. structural properties such
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as cartilage thickness from a 3D mesh modeling patient’s meniscus). The
analysis of the biologist are manually registered in a log book including the
protocols, the steps of their optimization and also the results. This process
of data collection is very time-consuming, and as a consequence of the
heterogeneity of the data sets, which are often treated separately from each
other, the results may be misinterpreted or treated without taking all the
aspects into consideration (Fig. 4.27).

In order to interpret the data, the biologist first performs a statistical
analysis and then evaluates if the acquired data supports the assumption.
Only after the assessment of all data, the given hypothesis may either be
supported by the data that satisfies the causality assumptions, or may be
refuted.

The visualization systems used for such analyses are isolated and allow
the exploration of features involving a concrete data type. However, the
presentation of the complete collection of information sources to one single
view is not possible. Moreover, the established relationships among different
parameters obtained from the data sets are only in the log books or in
biologist’s mind, but not together with the data sets in one picture.

Proposed exploration

Addressing the lack of a global exploration in the traditional approach,
the framework proposed in this chapter allows a direct and meaningful
exploration of all related data sets of interest for the biologist during the
analysis of hypotheses in osteoarthritis.

In the following, the process flow until the presentation of the data is
summarized. Heteregeneous data are classified according the parameters
referred in Sec. 4.2. This information is stored in the multi-scale ontology,
which supports the visualization, as detailed in Sec. 4.4. The architecture
makes feasible the extraction of information from the ontology as well as
the distributed rendering, as indicated in Sec. 4.5. Finally, the visualization
environment, presented in Sec. 4.3, allows the presentation of information
sources from the entire range of scales and their known relationships.

First, heteregeneous data are classified according to the parameters referred
in Sec. 4.2. Each DPF, denoted by large oval boxes in Fig. 4.26, such as "loss
of biomechanical function", is evidenced by several SOEs, e.g. "swelling".
Moreover each DPF is typically placed on a specific spatiotemporal scale
(indicated with orange font). The arrows indicate how SOEs affect each
other. Finally, some SOEs are associated with corresponding techniques, e.g.
"nano-indentation of cartilage".

Second, all this information is stored in the multi-scale ontology, as detailed
in Sec. 4.4. The information is categorized identically as in the example
depicted in Fig. 4.10; Fig. 4.26 constitutes an evolution of the previous fig-
ure including a more complete number of factors involved in the articular
cartilage degradation during osteoarthritis. Thus, the multi-scale biomed-
ical knowledge consists of the features of the degradation process, their
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Figure 4.28: Example of multi-scale visualization environment for exploration of
multi-scale data of knee joint.

relationships and the aforementioned information sources as evidence of
the features, as depicted in Fig. 4.7.

Third, the architecture of the exploratory system makes feasible the extraction
of information from the ontology and the composition of the visualization
scene. Thus, features such as location of resources, visualization techniques
and settings are sent to the distributed rendering scheme, which performs
the rendering of the data sets (c.f. Sec. 4.5).

Finally, the visualization environment (c.f. Sec. 4.3) allows the presentation
of the data sets from the entire range of scales as well as their known
relationships needed to be explored (Figs. 4.28- 4.33). The 3D multilayered
visualization environment presents the data sets as a network of spatially
distributed and interconnected nodes. This allows the simultaneous access,
proper visualization and natural exploration of heterogeneous data across
domains of medical knowledge, facilitating the task of a specialist to explore
hypotheses from a large perspective, as visual results from the performed
analyses can be presented in one single environment. This kind of view
also contributes to the formulation of new hypotheses, which would lead
to perform new quantitative and statistical analyses.

In detail, the following figures represent examples of the multi-scale
environment with multi-scale data of knee joint. Data coming from cellular,
organic and behavior scales are placed on focus (knee joint, 3D reconstruc-
tion of micro-CT scan of cartilage of meniscus, graphs associated, and
histological images of meniscus), context (MRI of knee) and background (gait
motion analysis) layers.

Data sets from each spatiotemporal scale (i.e. micro, medium and macro)
are encapsulated in nodes and positioned on one of these layers, which are
distinguished by their z-order. As the user profile is biologist, micro-scale
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data are positioned on the focus layer, constituting the main scale of interest.
Medium-scale data is place behind on the context layer, and macro-scale
data in background, which is the last layer, least seen and less important,
completing the general view across all the spatiotemporal ranges. The use
of this representation alleviates the differences in the order of magnitude of
data, and allows the direct extraction of information from the context. In
addition, the rendering of data sets in independent nodes allows a consistent
representation for heterogeneous data. The abstract scale is represented by
arrows in the relations between nodes, indicating spatial origin of InfoVis
sources, as well as the hierarchy of evidences which proof the different
cartilage degradation process features represented by the available data
sets.

The navigation on the environment is immersive, as the environment is
shown in stereoscopic and full screen mode, in which data sets encapsulated
in hollow cubes can be manipulated by performing actions on the nodes,
e.g. motion, rotation (Fig. 4.33), zoom-in/out (see Sec. 4.9).

Figure 4.29: Multi-scale visualization environment for exploration of knee joint
related data, including only the focus layer.

Figure 4.30: Focus and context layers.
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Figure 4.31: Focus, context and background layers.

Figure 4.32: Arrows indicating SOEs, DPFs and origin of sources.

Figure 4.33: Exploration of the cartilage thickness.
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4.7 evaluation

A controlled experiment was performed in order to obtain initial feedback
from the potential users about the visual features proposed within the multi-
scale visualization approach. This preliminary evaluation was performed
during an initial phase of the development of the environment, which has
been published in [192]. This section extends the description of the design
of this evaluation and the obtained results.

Purpose

The aim of the experiment was to analyze if and to what extent the pro-
posed visualization features for the multi-scale visualization environment
are comfortable to the user with respect to some traditional visualization
features, generally used for the exploration of multi-scale biomedical data
sets (c.f. Sec. 3.2). The observed features are listed as below in Table 4.3:

Table 4.3: Exploration features under analysis.

Exploration features Traditional approach Proposed approach

E1. Representation of data sets Tree list structure Nodes displaying data sets

E2. Container shape of data set Rectangle Circle

E3. Transparency of container Opaque Semi-transparent

E4. Visualization style Flat desktop 3D workspace

E5. Preservation of spatial
dimensions among data sets

Yes (placeholders) Not (non-linear depth)

E6. Display technique 3D Monoscopic 3D Stereoscopic

E7. Context preservation
among SciVis and InfoVis
views

None Visual links

E8. Context information of data
sets

Label description Visual links

This preliminary analysis of the user comfort with the aforementioned
features focuses on the exploration of multi-scale biomedical data sets.
Therefore the participants were chosen among scientists which are famil-
iar with the exploration of those biomedical data sets. Those scientists
were asked to perform a sequence of tasks related to the exploration of
multi-scale data in a controlled protocol, in which different visualization
features appeared. The analysis of the users’ preference led to point out the
convenience and significance of the proposed visualization approaches.

Participant group

The participants were selected among members of the groups addressed in
the design of the system. The test group comprised 13 graduates from the
fields of: computer graphics (7 participants), biomechanical engineering (4
participants), physics (2 participants). The test group was composed of 9

men and 4 women aged 20 to 31 years (avg. 25.23yr std. 3.14).
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The participants were tested for color vision deficiencies via an Ishihara
test [110], and no disorders were found.

Setup

The visualization environment was performed on a computer MacBook
Pro [10], including external keyboard and mouse. The visualization display
was also external, concretely, a passive stereoscopic display Miracube Full
HD (24 ”, ratio 16:10 [12]) with 3D glasses. The test was conducted under
stable artificial light conditions (Fig. 4.34).

Protocol

Eight scenarios were designed to evaluate each pair of the features directly
related to visualization (one extra is related to interaction, giving a total of
9 scenarios, see [192]), defined in Table 4.4. Each scenario was evaluated
twice, firstly using a condition associated with the feature A, and then with
the feature B, while other conditions remained unchanged during each
scenario. All these 16 cases, were performed twice, by using two interaction
techniques (mouse and Leap Motion [9]). In the case of the analysis of
the visualization, this allows to increase the number of samples for the
data analysis. All the participants performed the same set of 32 tasks in a
random sequence different for each participant.

During each scenario participants were asked to perform tasks related
to the exploration of multi-scale data of the knee joint. The tasks are sum-
marized in the aforementioned Table 4.4. Every scenario was composed of
a maximum of 8 nodes containing knee joint data sets from the behavior,
organic and cellular scales which had different visualization properties
(Fig. 4.35).

Prior to the presentation of the tasks, users were trained on two examples,
in order to learn how to perform the experiment. After performing each task,
participants gave a comfort score - an integer between 0 and 10 (0 indicating
’extremely uncomfortable’; 10 indicating ’extremely comfortable’). During
all the duration of the experiment, users were observed. In addition, after

Figure 4.34: Setup presented to the user.
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Table 4.4: Description of scenarios and evaluated visualization features (X indicates
the pair of features under evaluation).

Cond.
Features Scenarios

Feature A (trad.) Feature B (prop.) S1 S2 S3 S4 S5 S6 S7 S8

E1 File tree list Data sets
displayed in
nodes

X B B B B B B B

E2 Rectangle nodes Circle nodes A X A A B B A B

E3 Opaque nodes Semi-transparent B A X B B A B B

E4 Flat workspace Multilayered
workspace (max.
3 layers)

B B B X B B A B

E5 Linear depth
scale and
placeholders

Non-linear
depth scale

B B B B X B B B

E6 3D Monoscopic 3D Stereoscopic B A B B B X A A

E7 Separated SciVis
and InfoVis
views

Linked views of
SciVis and
InfoVis

X A A A B B X X

E8 Only description
of each node

Visual (semantic)
links between
nodes

A A A A A A A X

Task of the scenario

S1. Indicate the maximum value of the bar chart.

S2. Find zone in the cartilage.

S3. Find color of the MRI of the leg.

S4. Find the leg which belongs to the knee system.

S5. Find the color of the cartilage of meniscus.

S6. Specify number of vectors seen in the gait motion data set.

S7. Indicate the maximum value of variation during the gait motion.

S8. Find the data set which might be influenced by a problem on the knee system.

Data sets

• Gait motion analysis (TemporalNode).

• Two 3D-representations of knee joint (3DNode via DICOM and VTK workers).

• Two set of histological images from meniscus (SetImageNode).

• 3D reconstruction of cartilage of meniscus from micro-CT scans (3DNode via a VTK worker).

• Two graphs associated to pore size distribution and variation (InfoVisNode).

completing the experiment, users answered a written questionnaire in order
to assess their comfort with concrete visualization properties (Table 4.5).

Data analysis and results

The scores obtained during the experiment of each user were processed in
order to obtain trinary user preference values. The visualization preference
was calculated by pairing cases with the same scenario and interaction
method, and opposite condition under test. The following rule was used in
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Figure 4.35: Example of scenario presented to the user.

Table 4.5: Questions on written questionnaire (selection of preference and justifica-
tion of answer).

Indicate preference between:

W1. File tree list / Nodes containing data sets.

W2. Cube / Sphere as shape of the node for exploration of SciVis data.

W3. Cube / Sphere as shape of the node for exploration of InfoVis data.

W4. Opacity / Transparency of nodes.

W5. Arrows / No arrows between nodes to understand the scene.

order to determine the preference value: if scores from the two cases have
the same value then there is "no preference" else preference was chosen in
favor of the case with the higher score. The distribution of preferences of all
the participants based on the evaluated conditions is presented in Fig. 4.36.

From the written questionnaire, the collected data among the users showed
preference for:

• W1. Nodes displaying data sets rather than a tree list structure (75%).

• W2. Cube as preferred node representation figure for InfoVis contents
exploration (80%).

• W3. Cube as preferred node representation figure for SciVis contents
exploration (70%).

• W4. Opaque nodes rather than transparent ones (64%).

• W5. Arrows between nodes rather than their absence to understand
the scene (92%).

Those percentages were calculated from the option chosen (if any) by the
participants which made the written questionnaire.

Regarding the last result, the observation of the users during the ex-
periment revealed that the arrows were more useful for the users with
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no previous knowledge in the concrete scale which was focus of the task.
The absence of arrows showed how their actions were based on spatial
proximity or experience.

The written questionnaire also indicated the preference of cube as pre-
ferred node representation figure for the exploration of both SciVis and
InfoVis, independently of the shape of the data sets (InfoVis graphs would fit
a priori better in hollow cubes; SciVis volumetric renderings, in half-spheres).

The distribution of preferences shown in Fig. 4.36 points out that the users
preferred the proposed visualization for most of the conditions rather than
conventional approaches. The preference is more visible in the following
exploration features E1, E4, and E5 in which users found appealing the idea
of:

• E1. Displaying all relevant data sets rather than a file tree list.

• E4. Multilayered workspace rather than flat workspace.

• E5. Non-linear depth scale rather than linear depth scale and place-
holders.

The results also reveals that there is a susceptible lower preference for
E6 (3D stereoscopic presentation of content). This might be attributed to
the passive polarized stereoscopic technology display used during the
experiment. Since this display has narrow vertical viewing angles, the users
could have changed their body posture after initial calibration, causing
visual discomfort and affecting the preference values.
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Figure 4.36: Distribution of user preference between the feature in the proposed
approach (B) and in the traditional approach (A). Conditions are listed
in Table 4.4.
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4.8 discussion

The example of use described in Sec. 4.6 together with the preliminary
evaluation of Sec. 4.7 points out the utility of the proposed approach for
biomedical specialists confronted with massive amounts of multi-scale data
on a daily basis. The multi-scale environment allows the simultaneous
access and proper visualization of heterogeneous data across domains of
medical knowledge, providing also semantic means to identify items during
the exploration, e.g. to spatially observe the relationships among data sets,
such as the propagation of the cartilage degradation evidenced in each data
set, alleviating specialists’ task of organization and understanding data.

This example of used discussed from the point of view of a biologist
can be considered to be applicable for other specialists that are working on
the exploration of multimodal or multi-scale biomedical data (c.f. Sec. 4.6).
While the underlying architecture of the multi-scale environment makes
feasible the distributed rendering, the incorporation of semantics allows
for the indication of relationships among the data sets, and the integration
of both InfoVis and SciVis views facilitates the representation of all the
available and relevant data to the specialists.

Another example of use: exploration of dynamic images for functional evaluation
and modeling of muscular activity

The multi-scale visualization environment has been also preliminary ap-
plied for the exploration of dynamic images for functional evaluation and
modeling of muscular activity (Fig. 4.37). This case focuses on the analysis
of muscular stimulation in rats by the radioactive PET tracer 11C-acetate
[216], made by physicists. In short, a physiological electrical stimulation
is delivered to a single muscle in one lower limb of the rat, where the
contralateral muscle in the resting leg is used as a reference. The radioactive
PET tracer 11C-acetate is injected intra-venous after stimulation, and uPET
and uCT scans are acquired. The hypothesis to verify is the distinction
between rest and exercised muscle by means of uPET and 11C-acetate.

Figure 4.37 illustrates the use of the multi-scale environment in this sce-
nario. The scene is in this case composed of two layers: On the focus layer,
data sets and intermediate analysis results of the stimulated leg of a rat are
presented; on the background layer, information regarding the rest leg is
shown. The presentation of the different multimodal information (uPET and
CT scans including different volume of interests - VOI) are encapsulated
in nodes (type SetImageNode, note that several nodes are empty due to the
lack of information during the time of analysis of such a scenario). In those
SciVis nodes representing images from uPET and CT scans, a half-sphere
shape has been preferred as it fits with the kind of images obtained. The
navigation through those nodes is synchronized, allowing to explore the
same slide (spatial region) at different scan analyses instantaneously. On the
other hand, InfoVis graphs are encompassed in nodes with appearence as
hollow cubes. The arrows indicate the flow of the data processing, starting
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Figure 4.37: Exploration of dynamic images for functional evaluation and modeling
of muscular activity [216] in the multi-scale visualization environment.

from original sources and finalizing with statistical data. The presentation
of all the data sets in one single view with the aforementioned features can
alleviate the exploration of heteregeneous data by the physicist in order to
validate the hypothesis.

Moreover, the multi-scale environment remains scalable for the presen-
tation of new subsets of the multi-scale biomedical information and new
rendering workers. In any case, new rendering workers do not imply a
complete new implementation from scratch. The reuse of existing advanced
visualization software as rendering workers implies only minor develop-
ment of a Remote Procedure Call (RPC) module on their side [52], allowing
the obtaining of rendered images according to the view parameters through
network. Thus, for extending the system in this regard, it suffices to create
new rendering worker types and to include information about its use (c.f.
Sec. 4.5). The system would automatize the process of selection of suitable
visual properties for the exploration of new data.

4.9 interaction

Interaction and visualization constitute both fundamental components
establishing a connection between the user and the phenomenon under
analysis running in a computer (c.f. Fig. 2.1). The process of knowledge
discovery is intensified when the visualization incorporates a feedback loop
based on interaction. The development of the interaction system which
allows this feedback loop with the multi-scale visualization environment
is not the subject of this thesis. Only for completeness and consistency, the
multimodal interaction system developed is outlined. Extended details of
its features can be found in the work titled "Multimodal interaction with
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an integrated visualization system for the analysis of multiscale biomedical
data", authored by J. Rzepecki [191].

The described visualization (c.f. Sec. 4.3) uses a 3D multilayered envi-
ronment for the presentation of nodes encompassing 3D content without
a traditional GUI. In this environment data sets resemble a set of diverse
tangible objects rather than a directory of computer files. Therefore, the
proposed multi-scale visualization requires adaptation and extension of the
interaction methods in order to satisfy a coupled strategy of visualization
and interaction (c.f. Sec. 3.6). The basis of interaction was defined as a
user sitting in front of a 3D stereographic display, which includes a set of
interaction devices. The proposed approach employs a combination of 3D
stereoscopic visualization and multimodal interaction [191, 192].

Regarding stereoscopic visualization, the system utilizes an immersive 3D
multilayered environment, which allows the use of (passive and active)
stereoscopic displays (Fig. 4.38) [192]. This feature has been implemented
with the help of the stereoscopic rendering functionality included in Unity.

Figure 4.38: Stereographic visualization. Different alternatives: Miracube Full
HD [12] and Hyundai W240SL [6].

The multimodal interaction approach proposes to replace the primary in-
teraction from the traditional mouse input to hand gestures [191]. The
representation of 3D content in the form of nodes with the absence of GUI
has led to mimicking traditional interactions means with other strategies
towards an intuitive and natural 3D interaction. Thus, actions can be per-
formed by means of hand gestures, such as grasping and moving the hand in
order to select and move contents of the nodes. In addition, haptic interaction
allows the user to experience physical feedback of underlying structures
from biomedical data. Finally, in order to prevent a lack of interaction tan-
gibility or unavailability of other interaction systems, the use of traditional
interaction is also allowed as an auxiliary interface. The set of devices which
encompasses the interaction approach are depicted in Fig. 4.39.
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Figure 4.39: Interaction with the multi-scale environment (source [192]), including
stereographic monitor (Miracube Full HD [12]) and multimodal in-
teraction: hand gesture device (Leap Motion [9]), haptic interaction
device (SensAble Phantom Premium [18]), and keyboard and mouse.

The following sections briefly describe the interfaces and subsequent
scenarios:

Hand gesture interaction

Several hand gestures allow the manipulation of contents of the visualiza-
tion environment [191, 192], including:

• Grasping and moving the hand will select a node and will move it in
the environment (Fig. 4.40).

• Two-hand stretching / compressing nodes will initiate a zooming function
for a detailed or more general observation of the content.

• Pinching with two fingers will change internal features of a concrete
node, e.g. rotate a 3D model in a 3DNode or change the speed of a
temporal data set in a TemporalNode.

• Waving hands horizontally will clean the central part of the 3D workspace,
by moving all nodes to the edges.

The Leap Motion device [9] has been chosen as device for hand gesture
interaction. Leap Motion is a high-speed infrared depth camera that has
a low-latency data processing and low price [236]. It is especially suited
for hand tracking in a working space adjusted for a user sitting in front
of the screen. All implemented gestures were designed and implemented
according to this assumption.

Haptic interaction

Haptic interaction allows the user to examine concrete biomedical data
with force feedback reactions. Haptic interaction provides feedback forces
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Figure 4.40: Example of grasping and moving a node by using hand gestures [191].
The user is moving the node corresponding to the 3D model of the
knee joint.

and torques according to the collision response between the interaction tool
in the virtual world and the object (c.f. Sec. 2.5.2.1). The focus of haptic
interaction is volumetric data, since it is the most relevant data type to be
felt, supplying different feedback forces depending on the properties of the
data, e.g. fluid resistance when navigating through soft tissue (Fig. 4.41).

Regarding the implementation [191, 192], a SensAble Phantom Premium
1.5 [18] device has been used. The communication with the Phantom device
is performed via a network using a H3D API-based server [17] working
on a haptic interface machine. The need of an individual haptic interface
machine is required due to the need of high rate control updates and high
computational power. The interaction system synchronizes the position
of the haptic device and the scene geometry with the haptic interface
machine, performing haptic rendering of individual 3D data sets on the
haptic machine. The use of another device is possible since the interaction
system makes use of the framework H3D API, which supports other haptic
devices and manufacturers as well.

Figure 4.41: Example of haptic interaction with volumetric reconstruction of micro-
CT scans of cartilage [82].
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Traditional input

Although the multimodal interaction system design emphasizes supporting
novel interaction scenarios, it still accepts basic input from mouse and
keyboard.

The architecture of the interaction system ([191, 192]) follows the modular
principle of the multi-scale environment system. Therefore, it is possible
to decouple any of the interaction interfaces from the exploratory environ-
ment without loosing its major functionality. For instance, in the situation
where none of the main input devices are available, the system provides an
interaction method by means of keyboard and mouse input.





5
A P P L I C AT I O N S C E N A R I O : H E L I C A L A X I S D ATA
V I S U A L I Z AT I O N A N D A N A LY S I S O F T H E K N E E J O I N T
A RT I C U L AT I O N

This chapter presents the application of the multi-scale visualization envi-
ronment and its proposed methodology for the investigation of the knee
joint articulation. The use of enhanced intra-scale visualizations specifically
developed for the behavioral scale together with the multi-scale visualiza-
tion environment allows an intuitive and flexible exploration of kinematical
and other related data of the knee joint articulation.

5.1 introduction

The analysis of human articulation requires comprehensive visualizations
for the description of the motion in articulating joints. In this context, the
helical axis is a kinematical concept describing the motion of the knee joint
[218]. The translation of methods based on this concept to clinical practice
has the potential to significantly contribute towards several tasks, such as the
analysis of surgical techniques, implant types, and the evaluation of follow–
up rehabilitation approaches. Despite the advantages and potentialities
of the description based on helical axes, the existing processing methods
and visualization techniques are insufficient for these tasks. Concretely,
the methods of the related work (Sec. 5.2) are lacking in terms of robust
analysis capabilities and intuitive visualization:

• A method which calculates stable, valid and smooth helical axes for
the instantaneous description of the knee joint motion and subsequent
analyses.

• An intuitive and comprehensive visualization of the previously calcu-
lated helical axes in terms of bone anatomy.

• An intuitive visualization for an overall comparison of helical axis
data across several motion sequences.

• The incorporation of kinematical visualizations in a higher level of
framework in order to extend their role on the study of the knee joint
articulation, exploring related data sets and their known relationships
distributed across multiple spatial scales (c.f. Sec. 2.3).

To those aims, a methodology for improving the current state of the art
related to the analysis and visualization of helical axis data (see Table 5.1)
is introduced in Sec. 5.3. In short, the representation of motion sequences
of the knee joint is analyzed in a unifying mathematical method based on
the Lie group of rigid body motions and its Lie algebra (Sec. 5.4). Based
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on this method, intra-scale visualizations for accurately interpreting kine-
matical data of flexion-extension motion have been developed (Sec. 5.5),
concretely, the anatomical visualization (Sec. 5.5.1) and the overall simi-
larity visualization (Sec. 5.5.2). The multi-scale visualization environment
(described in detail in Chapter 4) allows the incorporation of these visu-
alizations in a global framework for the multi-scale exploration of knee
joint data (Sec. 5.6). In order to exemplarily demonstrate the utility of the
proposed methods for the analysis of the knee joint articulation, Sec. 5.7
presents the results obtained from kinematical data of experimental se-
quences and related data sets of multi-scale nature (c.f. Chapter 4). Finally,
the chapter concludes with a discussion on the results in Sec. 5.8.

Note: The application scenario was studied in a joint collaboration be-
tween the Laboratory for Biomechanics and Biomaterials of the Hannover
Medical School (LBB-MHH) and the Welfenlab, in which the kinematic
experimental set-up was coordinated by Sean Dean Lynch and Dr. med.
Tilman Calließ, while Benjamin Fleischer and Dr. Alexander Vais were
involved in the preprocessing of data.

Table 5.1: State of art of helical axis data visualization and analysis vs. the proposed
approach.

Aspect State of art Contribution

Description of motion based
on helical axes

Finite Helical Axis: Imprecise,
sensitive to noise [218, 140]

Method of IHA in terms of
Lie algebra: Valid and smooth
helical axes (Sec. 5.4)

Anatomical visualization of
helical axes

Lines through 2D sketch of
knee [218]: Not intuitive

3D and patient-specific
anatomical visualization:
Intuitive presentation of
helical axis data (Sec. 5.5.1)

Comparison of helical axis
data

Helical axis parameters along
gait pattern [49]: Difficult to
analyze overall differences

Overall similarity
visualization based on
proposed approach: Stable
and InfoVis analysis among
motion sequences (Sec. 5.5.2)

Analysis of knee joint
functional articulation and
related musculoskeletal
diseases

Analysis of behavioral scale do
not suffice, not flexible
exploration of multi-scale data
[86, 164]

Multi-scale visualization
environment including the
previous intra-scale
visualizations (Sec. 5.6)

5.2 basic principles and related work

In this section, basic principles regarding the description of motion based
on the helical axis method as well as their current processing methods and
visualization techniques towards the analysis of the knee joint articulation
are presented, indicating their shortcomings (Table 5.2).
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Table 5.2: Summary of properties regarding the state of art of helical axis data
visualization and analysis.

Aspect Properties

Description of motion based on helical axes Finite Helical Axis: Imprecise, sensitive to noise
[218, 140]

Anatomical visualization of helical axes Lines through 2D sketch of knee [218]: Not
intuitive

Comparison of helical axis data Helical axis parameters along gait pattern [49]:
Difficult to analyze overall differences

Analysis of knee joint functional articulation
and related musculoskeletal diseases

Analysis of behavioral scale do not suffice, not
flexible exploration of multi-scale data [86, 164]

5.2.1 Description of motion based on helical axes

The description of joint motion in biomechanical engineering can be ana-
lyzed by several methods, such as Euler angles, Cardan angles or helical
axes [184]. For hinge-like joints, such as talocrural and knee joints, the de-
scription of motion based on helical axes has been verified to be a valid tool
[105]. Regarding the knee joint, its axis of rotation is commonly discussed
in order to improve joint functionality and increase prosthesis longevity.
The generally adopted method to define this axis depends on anatomical
landmarks and is widely considered as a fixed axis to its referenced anatom-
ical landmarks [75]. However, this practice has proven to have inter- and
intra- individual discrepancies [224].

The description of motion based on a sequence of helical axes provides a
more direct and specific representation of flexion-extension [218], removing
repeatability errors [49, 218]. In contrast to the fixed axis of rotation, the
description of a bone motion in three-dimensional space can be more
faithfully captured in terms of a temporal sequence of helical axes HA[t]
and angles of flexion α[t] with respect to a reference bone (Fig. 5.1) [148].

The helical axis concept is based on a classical result in kinematics due to
Chasles [63], stating that any rigid body transformation can be considered
being the result of a translation along an axis and a uniform rotation
through an angle about the same axis (Fig. 5.2).

Euler or Cardan angles are widely used in biomechanics, providing a
well-understood anatomical representation of joint angles [184]. However,
the major disadvantage of such descriptions with respect to helical axes are
the presence of undesirable non–linear properties and singularities known
as "gimbal–lock" [90].

The description of motion in terms of helical axes can refer either to a
finite rigid body transformation between two distinct positions or to an
infinitesimal transformation, thereby characterizing the differential change
along a curve of rigid body transformations. While the second is commonly
known as the Instantaneous Helical Axis (IHA) [240], the first interpretation
is appropriately denoted as Finite Helical Axis (FHA) [53], which provides
a rough estimate of the IHA as the two positions approach each other.
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(a) Sagittal view of a helical axis. (b) Frontal view of a helical axis. (c) Description of the motion based
on helical axes.

Figure 5.1: Example of helical axes of tibia with respect to the femur (reference
bone) HATF[t], composed of instantaneous centers of rotation and di-
rection vectors HATF[t] = (pTF[t],~vTF[t]), defined in three-dimensional
space [151]. The angle αTF[t] is defined between the axes attached to
the femur and to the tibia, both of them being contained in the sagittal
plane. HATF[t] and αTF[t] characterize the flexion-extension motion of
the tibia with respect to the femur along the time t.

Figure 5.2: Representation of the description of a rigid body transformation based
on helical axis (source [127]).

However, it is well known that the FHA is highly sensitive to noise in
the two sample poses involved and its computation becomes numerically
unstable for small differences [148, 241], while on the other hand using too
large a difference yields only a bad approximation. This motivated Woltring
et. al. [240] to favor the IHA over the FHA as obtained from a process
involving the smoothing of the measured kinematical data. Nevertheless,
recent biomechanical studies rely on the FHA [218, 140, 100], and its use
is extended, which is easier to compute. Due to its lack of robust analysis
capabilites, the translation of methods based on the helical axis concept to
clinical practice has been limited.
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5.2.2 Visualization and comparison of helical axis data

Conventional representations of helical axis data do not allow for an ac-
curate analysis of the evolution of axes and their geometrical relationship
to the bones involved. Besier et al. [49] represent their helical axis data
with 2D graphical plots, i.e. alongside the conventionally captured gait
curve. Bogert et al. [218] represent helical axes by lines passing through
a 2D illustration of a joint model and use a numbering system to depict
the temporal evolution of the axes (Figs. 5.3, 5.4). The representation by
Bogert et al., while providing a coarse qualitative impression, is insufficient
to assess the individual patient–specific anatomy [75, 219, 220].

The lack of a realistic visualization of the knee joint motion together with
the representation of helical axes leads to difficulties for biomechanical engi-
neers to fully understand the helical axis data and extract directly relevant
information. For instance, the orientation of the helical axis configuration
and the localization of the functional flexion axis in terms of anatomical
bone motion can not be fully understood with 2D graphs (Fig. 5.3).

In addition, the analysis of similarity among several different motion se-
quences remains difficult. Plots of helical axis parameters (e.g. [49, 218, 243])
represent faithfully the temporal variation of a physical parameter. However,
those do not directly support discerning overall differences between motion
sequences. For instance, Fig. 5.4 contains only three motion sequences and
the comparison of them is visually unclear.

Figure 5.3: Representation of helical axes by means of a 2D illustration
(source [218]).
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Figure 5.4: Type of plot required for the description of the orientation and position
of the FHA during of the stance phase of running (source [218]).

5.2.3 Helical axis data in the context of analysis of knee joint functional articula-
tion

In the context of a wider scenario of studying diseases of the knee joint, the
interpretation of the helical axes contributes only partially to the description
of the knee joint state. The study of diseases related to the knee joint requires
data from multiple spatial scales and knowledge belonging to different
medical domains (c.f. Sec. 2.3). The analysis of kinematical behavior and its
relations with medical features found at other spatial scales, such as organic
or cellular scale is required, e.g. the relation between degeneration of the
articular cartilage (organic scale) and medial deviation of mechanical axes
[117].

Osteoarthritis is an example of a pathology which simultaneously in-
volves information relating diverse spatial scales (Fig. 5.5), as it has been
described in Sec. 4.6. Osteoarthritis is a result of cartilage degradation [88],
which starts with changes evidenced at cellular scale [107, 168], leading to
alterations on mechanical properties at organic scale. Finally, those changes
cause measurable variations of the range of motion of the knee at behavioral
scale [38], which is the focus of this chapter.

The improvement of the visualization techniques able to encompass the
complete spatial range of biomedical data sets has been highly requested
for many authors, as it has been indicated in Sec. 2.3.3. Improvements in
this direction would encourage the exploration of patient–specific data of
multi-scale nature, and would lead to more feasible findings of relevant
factors for the characterization of potential pathologies. However, specialists
of each medical domain commonly use on a daily basis isolated systems for
the exploration of features involving a multi-scale pathology. Those systems
focus on features in a concrete domain and scale, preventing to analyze
relations among features from different fields. In the last years, several
proposals (e.g. [64, 108, 145]) have promoted a collaborative investigation of
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related diseases in the human body within an integrated approach. However,
in terms of visualization, the integration of all information sources of the
biomedical process under study and their known relationships clearly needs
to improve [86, 152, 164] (c.f. Sec. 2.7).

Figure 5.5: Degradation of articular cartilage during osteoarthritis (c.f. Fig. 4.26)
and the relevance of the behavioral scale.

5.3 methodology

In order to contribute to the aforementioned state of art, several methods
have been developed for improving the visualization of helical axis data and
the investigation of the knee joint articulation. The methods, summarized
in Table 5.3, have been firstly published by the author in [151, 153]. In the
following, this chapter expand upon those descriptions and results.

Table 5.3: Summary of proposed methods for helical axis data visualization and
analysis (see the state of art in Table 5.2).

Aspect Proposed method

Description of motion based on helical axes Method of IHA in terms of Lie algebra (Sec. 5.4)

Visualization of helical axes 3D and patient-specific anatomical intra-scale
visualization (Sec. 5.5.1)

Comparison of helical axis data Overall similarity intra-scale visualization
(Sec. 5.5.2)

Analysis of knee joint functional articulation
and related musculoskeletal diseases

Multi-scale visualization environment including
the previous intra-scale visualizations (Sec. 5.6)



140 analysis of the knee joint articulation

First, the approach for the description of motion based on helical axes
makes use of the Lie group SE(3) of rigid body motions and its Lie algebra
se(3) for a natural and smooth representation of motion sequences. This
proposed method allows to obtain stable instantaneous helical axes from
motion sequences. Those concepts, which have common applications in
Robotics [158], have been applied in this work for the description of the
knee joint, and are described in Sec. 5.4 including the necessary kinematics
principles and the experimental kinematical data collection process.

Regarding the anatomical visualization of helical axis data, a specifi-
cally designed patient–specific three–dimensional visualization has been
developed [151]. The visualization is based on the processed helical axis in-
formation and incorporates three–dimensional visualization from CT scans.
This method allows for an intuitive interpretation of the axes and their
geometrical relation with respect to the knee joint anatomy as described in
Sec. 5.5.1.

The representation of motion sequences in terms of the Lie algebra se(3)

also allows for an efficient similarity comparison across several motion
sequences. The subsequent visualization of similarities, which corresponds
to an InfoVis method (c.f. Sec. 2.1.3.2), provides an overall comparison
among sequences in order to differentiate cases, e.g. surgery techniques,
presented in Sec. 5.5.2. Note that representing information regarding helical
axes requires effectively the combination of scientific visualization and
information visualization techniques, following the approach described in
Sec. 3.3.

In the context of a wider scenario of analysis of diseases affecting the knee
joint articulation, those two intra-scale visualizations are proposed in the
framework of the multi-scale visualization environment. This environment,
outlined in Sec. 5.6 (c.f. Chapter 4 for more details) increases the potential of
those methods for the study of knee joint diseases, allowing the exploration
with other related data sets distributed across multiple spatial scales.

5.4 instantaneous helical axes in terms of the lie algebra

se(3)

In this section, a smooth description of motion sequences of the knee joint
in terms of infinitesimal helical axes is proposed, providing the basis for
analysis and visualization (see Secs. 5.5,5.6) [153]. This method of descrip-
tion of motion exploits the unifying mathematical framework based on the
Lie group of rigid body motions SE(3) [158]. In this framework, the expo-
nential map that relates the Lie group SE(3) with its associated Lie algebra
se(3) is used to parametrize the rigid body motions. Then, a polynomial
fitting within the Lie algebra is performed to provide a smooth description
of a given discrete knee motion sequence. The accuracy and stability in
the obtained sequence is crucial for ensuring a stable derivative which is
essential for computing the instantaneous helical axes (Fig. 5.6).

In the following, a short summary of the essential mathematical notions
and kinematical background is described in Secs. 5.4.1,5.4.2, including defini-
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tions of the finite (Sec. 5.4.3) and instantaneous helical axis (Sec. 5.4.4). Next,
the experimental data collection process used for obtaining the kinematic
data is described in Sec. 5.4.5. Based on this background, the application of
instantaneous helical axis for the description of flexion-extension motion of
the knee joint in terms of the Lie algebra se(3) is explained in Sec. 5.4.6.

Figure 5.6: Schema of the proposed description of motion sequences based on IHA
in terms of the Lie algebra se(3): Motion sequences are represented
as curves in the Lie group of rigid body motions. The associated Lie
algebra is used to parametrize the rigid body motions, to perform
the polynomial fitting of motion sequences and finally to compute
instantaneous helical axes.

5.4.1 Mathematical notions

It is assumed that the reader is familiar with basic notions of algebra and
differentiable manifolds c.f. [175, 131]. In addition, for the kinematical
description in the following section, the notion of Lie groups is needed.
Therefore, in the following a brief summary of the necessary definitions is
given.

First of all, recall that group is an algeabric structure consisting of a set
of elements G with an operation · that combines any two elements to form
a third element, i.e. · : G×G→ G, (a,b) 7→ a · b. The operation is assumed
to satisfy several natural properties, such as associativity, the existence
of an identity element 1 ∈ G and the existence of an inverse operation
G→,a 7→ a−1 with a · a−1 = a−1 · a = 1.

A manifold is a topological space M satisfying additional requirements
(i.e. being second countable and Hausdorff) in which each point has a
neighborhood U that is homeomorphic to an open set V ⊆ Rn. A set
of such charts is called an atlas of M. Two charts x : U1 → V1 and
y : U2 → V2 which overlap in U = U1 ∩U2 6= ∅ induce the chart tran-
sition y ◦ x−1 : x(U) → y(U). A manifold M is called differentiable if it is
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equipped with a maximal atlas such that all associated chart transitions are
(infinitely) differentiable. Based on these concepts, several notions familiar
from classical calculus, such as curves, tangent vectors, tangent spaces and
the notion of differentiability of functions can be generalized. In partic-
ular, a map f : M → N between manifolds is called differentiable if its
composition with any charts x : U1 → V1 of M and y : U2 → V2 of N
is differentiable, i.e. if the map y ◦ f ◦ x−1 (with apropriate restrictions of
domains and codomains) is differentiable in the classical sense.

Based on the notion of group and differentiable manifold, a Lie group can
be defined as a group G that additionally has the structure of a differentiable
manifold, such that the group operation and the inverse operation are
differentiable. For an extensive introduction to these topics, see [189].

5.4.2 Kinematical background

A rigid body transformation (also called an Euclidean transformation) in
three-dimensional space can be described as a map M : R3 → R3,p 7→
Rp+ V , where

• R describes the rotational component as an orthogonal transformation
with unit determinant, i.e. R ∈ SO(3) = {A|A ∈ O(3) and det(A)= 1}.

• V ∈ R3 denotes the translational component.

The set of all possible rigid body transformations constitutes the Lie group
SE(3), known as the special Euclidean group of 3-dimensional space. Using
homogeneous coordinates, any rigid body transformation can be written in
terms of a 4× 4 matrix, thereby giving rise to the matrix representation

SE(3) :=

{(
R V

0 1

)
: R ∈ SO(3), V ∈ R3

}
.

The tangents of curves of rigid body transformations passing through
id ∈ SE(3) give rise to the tangent space Tid SE(3), known as the Lie algebra
se(3) with

se(3) :=
{
ξ̂ : ξ = (ω, v) ∈ R3 ×R3

}
,

where (̂ω, v) :=


0 −ωz ωy vx

ωz 0 −ωx vy

−ωy ωx 0 vz

0 0 0 0

 .

The elements of se(3) are called twists. In the following, by abuse of no-
tation, the notational distinction between the pair of vectors ξ and the
corresponding matrix ξ̂ will be omitted if no confusion can arise.

The exponential map exp : se(3) → SE(3) given by exp(ξ) = eξ =∑∞
k=0

ξk

k! can be shown to be surjective and thereby allows any rigid body
transformation to be described in terms of a twist.
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Applying the Caley–Hamilton theorem, which states that ξ (viewed as a
linear map on R4) yields zero upon formal substitution into its associated
characteristic polynomial P(λ) = det(ξ− λ id), it can be shown that any
analytical function of ξ, including eξ, evaluates to a third–order polynomial
in ξ. The coefficients of the latter are determined by relating the eigenvalues
of ξ to those of eξ. These considerations lead to the closed–form expression

eξ = id+ξ+
1− cos θ
θ2

ξ2 +
x− sin θ
θ3

ξ3 , (5.1)

where θ is the norm of the ω component of ξ = (ω, v), i.e. θ = |ω| [225].
Note that the coefficients have a removable singularity at θ = 0 and are
in fact analytic functions of θ, thus the above expression is actually well–
defined and smooth for all twists ξ, including zero.

The twist representation has the advantage of not requiring redundant
degrees of freedom, as it represents a rigid body transformation with the
minimum amount of six parameters. Descriptions based on Euler or Cardan
angles are similar in this regard, but they suffer undesirable non–linear
properties and singularities known as "gimbal–lock" [90]. Other commonly
used representations involving rotation matrices or quaternions lack the
ability of easily approximating a sequence of rigid body transformations by
a motion trajectory fully contained in the Lie group SE(3) and require addi-
tional orthogonalization or normalization measures. Using the Lie algebra
representation of rigid body motions and the exponential map as described
above avoids these problems and provides an effective computational tool.

5.4.3 Finite helical axis

The equation (5.1) reduces to the Rodrigues rotation formula for twists
of the form θ(ω, 0) with unit vector ω. The Rodrigues formula describes
a rotation of arc-length θ around ω [186]. A geometrical interpretation
of the exponential map in the general case is obtained by relating it to
Chasles’ theorem [63], which states that every rigid body transformation
that contains a rotational component can be expressed as a rotation of
arc-length θ about an axis H followed by translation of hθ units along that
axis (Fig. 5.7). This axis is called screw axis or finite helical axis (FHA), while
θ is the magnitude and h is the pitch of the screw. Indeed, the rigid body

ω × v

ω

θ

hθ = 〈ω, v〉 θ
H

Figure 5.7: Description of a rigid body transformation in terms of a screw.
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transformation eθ(ω,v) corresponding to the twist θ(ω, v) where |ω| = 1 is
realized as a screw with

H = (ω× v) + Rω, h = 〈ω, v〉 . (5.2)

5.4.4 Instantaneous helical axis

In this section, consider a fixed coordinate system A and a rigid body with
an attached coordinate system B. It is assumed that B is moving relative
to A such that both systems are related by B = Aeξ(t) where ξ : I→ se(3)

is a one–parameter family of twists. A point p fixed to the moving body
has constant coordinates pB with respect to B, while its coordinates pA
with respect to A are pA = eξ(t)pB and therefore depend on t. Taking the
derivative with respect to t yields the velocity of p relative to the system A

as

dpA
dt

=
deξ

dt
pB =

deξ

dt
e−ξpA.

The quantity deξ

dt e
−ξ is a twist (i.e. it belongs to se(3)) and is called the

instantaneous spatial velocity of the moving body. The associated screw
axis (in the sense of equation (5.2)) constitutes the so–called instantaneous
helical axis (IHA). In order to compute de

ξ

dt e
−ξ from ξ and its derivative dξdt

one requires the differential of the exponential map exp : se(3)→ SE(3). To
this end, the following relation is exploited, c.f. [189]:

deξ

dt
e−ξ =

eadξ − id
adξ

dξ

dt
. (5.3)

Here ad denotes the action of se(3) on se(3) given by adξ ζ := [ξ, ζ] :=
ξζ− ζξ. The operator on the right–hand side of eq. (5.3) is defined in terms
of its formal power series expansion and can, by a similar argument as
the one leading to eq. (5.1), be evaluated in closed form using the Cayley–
Hamilton theorem, yielding a fifth order polynomial in adξ, namely

eadξ − id
adξ

=

id+
1

2
adξ+

(4+ c)θ− 5s

2θ3
ad2ξ+

6c+ sθ+ 2θ2 − 6

2θ4
ad3ξ

+
(2+ c)θ− 3s

2θ5
ad4ξ+

4c+ sθ+ θ2 − 4

2θ6
ad5ξ (5.4)

where ξ = (ω, v), θ = |ω|, s = sin θ, c = cos θ [225]. As in the case of
eq. (5.1) any ostensible singularity at θ = 0 is removable, thus all coefficients
constitute analytic functions of θ.

5.4.5 Kinematic data collection

The kinematic data collection is performed with the help of a specifically
designed in vitro knee simulator (Fig. 5.8), following the experimental work
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described in Ostermeier et al. [169], and coordinated by LBB-MHH [153].
For each experiment, freshly frozen cadaver knee joints are prepared by
removing skin and subcutaneous tissue, while keeping the articular capsule
intact. The femur is fixed in position and the tibia is fixed to a lever arm
that constrains the tibia to flexion–extension motion. The simulator applies
loads to the quadriceps and hamstring tendons, forcing the knee specimen
to complete an extension motion.

Figure 5.8: Kinematic experimental set–up, coordinated by LBB-MHH. The simu-
lator applies loads to perform an extension motion of the knee joint,
which have fixed passive reflective markers tools.

The tracking of bone motion is performed using a two camera Polaris
Optical Tracking System [16], with passive reflective marker tools. Those are
rigidly fixed to the femur, tibia and patella providing the tracking of rigid
bone motion at an accuracy of 0.35mm at 10Hz. Moreover, a set of stan-
dardized physical anatomical landmarks LE found on the bone’s surfaces
are also acquired in order to establish corresponding anatomical coordinate
systems. The latter are defined according to the recommendations of the
International Society of Biomechanics for reporting human joint motion of
the lower body [242]. The acquisition of the landmarks is made manually by
the surgeon touching specific points of the bones with a passive reflective
marker pointer device (Fig. 5.12a).

The analysis in this work is focused on the relative motion of the tibia with
respect to the femur. The patella-femur motion can be analyzed in a similar
way. Referring to Fig. 5.9, AT , AF represent the anatomical coordinate
systems for tibia and femur. Moreover, TT and TF denote the coordinate
systems rigidly moving with the reflective marker tools attached to the
tibia and femur. The tracking process yields for each time sample t the
mappings MC

TF(t) and MC
TT (t) that transform the coordinates of a point

relative to the marker systems TF and TT into the corresponding coordinates
relative to the tracking coordinate system C. The computation of these
transformations based on the tracked marker positions is performed by the
methods presented in Spoor et al. [202]. Using the transformations MTF

AF

and MTT
AT that map anatomical coordinates into marker tool coordinates

(see Fig. 5.10), the relative motion between the femur and tibia is given by

MAF
AT (t) =M

TF
AF(t)

−1MC
TF(t)

−1MC
TT (t)M

TT
AT (t). (5.5)

The Cartesian basis vectors ex, ey, ez of R3 are identified with the three
axes of AF such that the sagittal plane is spanned by ex and ey.
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(a)

TT

AT

TF
AF

C

(b)

Figure 5.9: (a) Experimental set–up and (b) scheme of relevant coordinate systems.

Figure 5.10: Scheme representing the obtaining of the relative motion between tibia
and femur MAFAT (t) (red color), by using the mappings given by the
tracking process (black) and others which were computed (gray).

5.4.6 Helical axes for the knee joint

In the considered case of flexion-extension motion MAF
AT , the time parameter

t in eq. (5.5) can be replaced by a more convenient parameter, namely
flexion angle αz between the tibia and the femur. The latter is obtained by
decomposing MAF

AT as

MAF
AT = exp(0, r) exp(αzez, 0) exp(αyey, 0) exp(αxex, 0).

As the flexion–extension motion is the main interest of this work, the
parameter αz is chosen as primary parameter.
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In the following, in order to simplify the notation, α will be written
instead of αz and M(α) or simply M for the transformation MAF

AT . The
corresponding geometry is indicated schematically in Fig. 5.11.

(a) (b)

Figure 5.11: Geometrical configuration illustrating the flexion of the tibia with
respect to the femur. The helical axis Hα is given by the point of
rotation pα and the unit vector ωα for each angle α.

The tracking process outlined in the previous subsection gives rise to
a sequence M(α0), . . . ,M(αn) which, using M = eξ, is interpreted as
a sequence ξ(α0), . . . , ξ(αn) of twists. Assuming an underlying smooth
motion it is reasonable to apply a polynomial regression in order to obtain
a smooth function expressed as

ξ(α) =

(
2

αn −α0

) 1
2
d∑
k=0

ckLk

(
2α−α0 −αn
αn −α0

)
(5.6)

where c0, . . . , cd ∈ R6 are coefficient vectors and

Lk(x) =

(
k+

1

2

) 1
2 1

2nn!
dn

dxn

(
(x2 − 1)n

)
k = 0, . . . ,d

are the normalized Legendre polynomials constituting a basis for the space
of all polynomials of degree d, while the scaling factors in eq. (5.6) are
included for later convenience. The Legendre polynomials are orthogonal
with respect to the L2 scalar product over [−1, 1], i.e.∫1

−1
Li(y)Lj(y) dy = δij , (5.7)
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a fact that will be useful for analyzing the similarity of motion sequences
(see Sec. 5.5.2).

Based on this description, and referring to equations (5.3) and (5.4), the
twist

ζ =
dM

dα
M−1 =

eadξ − 1

adξ
dξ

dα
(5.8)

and its associated screw (H, θ,h) are obtained, which yields the instanta-
neous helical axis H for each flexion angle α. The intersection of the helical
axis with the sagittal plane yields the point

p = ω× v− (ω× v)z
ωz

ω =
ez × (v−wh)

ωz
,

which is known as the point of rotation (also indicated in Fig. 5.11). Visual-
izing its location and variation according to the flexion angle α contributes
to an intuitive assessment of the position and orientation of the helical axis
with respect to the geometry of the knee joint.

5.5 intra-scale visualizations for the analysis of helical axis

data

The computational approach for the representation of helical axis data and
its approximation within the Lie algebra se(3) presented in Sec. 5.4 provides
the basis for the development of intra-scale visualizations which facilitate
the joint motion representation and analysis. In this section, the following
visualizations are presented:

• Anatomical visualization of helical axis data: An intra-scale visualiza-
tion which performs the three-dimensional motion of patient-specific
bone segments as well as the representation of helical axes on the
bone, described in Sec. 5.5.1.

• Overall similarity visualization for comparison of helical axis data:
Based on the multi-dimensional scaling approach involving the previ-
ously determined polynomial approximation by means of Lie algebra,
an intra-scale visualization based on a high–level comparison of mo-
tion sequences is proposed in Sec. 5.5.2.

5.5.1 Anatomical visualization of helical axis data

As indicated in Sec. 5.2.2, conventional representations of helical axis data
have been insufficient for a complete anatomical understanding of the
evolution of the helical axis data during the flexion–extension motion.
Therefore, a viewer (or visualization) by means of an anatomical and three–
dimensional representation has been developed in order to facilitate the
observation of the helical axis data and the corresponding flexion-extension
motion at the knee joint.
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The data used for the proposed visualization has been obtained from the
experimental set–up described in Sec. 5.4.5. Subsequently, those data are
used in order to calculate helical axis data from biomechanical experiments
applied to specific specimens, as described in Sec. 5.4.6. Additionally, CT
scans from each specimen are acquired prior to the kinematic data collection.

Within the viewer, CT images of the considered specimen are accurately
segmented, thereby obtaining a 3D segment-visualization of the femur, tibia
and patella. Subsequently, a set of significant landmarks LV is specified by
biomechanical engineers within the viewer (Fig. 5.12b). These landmarks
correspond to the physical landmarks LE on the bone’s surfaces acquired in
the data collection process (Fig. 5.12a, c.f. Sec. 5.4.5). These landmarks can
be specified using manual or automated approaches, also on MRI images
[167] (Fig. 5.14). Afterwards, a matching between LE and LV is used to
establish the mapping between the experimental tracking set–up TE and
the reference frame TV used within in the viewer. Thus, the kinematical
data can be reinterpreted within the viewer reference system. Then, the
visualization performs the three–dimensional motion of the patient–specific
bone segments obtained from CT scans incorporating the representation of
the calculated sequence of helical axes (Fig. 5.12c).

(a) Experimental set-up (b) Definition of TV (c) Representation of
knee joint motion

Figure 5.12: (a) Experimental set-up with the tracking coordinate system TE. (b)
Landmarks on the bone’s surfaces LV defined in the viewer in order
to obtain the coordinate system TV . (c) 3D Representation of the knee
joint flexion and helical axis of the tibia with respect to the femur
HATFV [t].

The implemented visualization has the following functionalities:

• The 3D view shows the three–dimensional spatial configuration of the
instantaneous helical axis Hα given by the point of rotation pα and
the unit vector ωα (see Fig. 5.11), reproducing the relative motion of
the tibia with respect to the femur according to the flexion angle α
(Fig. 5.13). The visualization is able to represent the smooth temporal
evolution of the IHA as computed previously (c.f. Sec. 5.4) but also
FHA calculations [151].
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The visualization incorporates several features (see also Figs. 5.19,
5.20), e.g. the analysis of the trajectory of the point of rotation pα,
which is shown as a curve on the sagittal plane. Similarly, the visu-
alization allows analogously for an inspection of curves obtained by
intersecting the helical axes with individual bone segments or other
specific planes of interest.

• The 2D sub-panel view enables the quantitative inspection of related
data concerning, e.g. the translations of the centers of rotation (i.e.
indicating anterior and posterior shifts). Both 2D and 3D views are
synchronized in time, allowing an interactive inspection of the kine-
matics in terms of the helical axis for any chosen flexion angle.

The visualization was implemented in Java programming language using
the Java3D API [8]. The viewer constitutes a plugin for the open platform for
3D–visualization and 3D segmentation of medical volume data YaDiV [81].
Therefore, the viewer can take advantage of YaDiV features regarding seg-
mentation, stereographic volume visualization [82] and haptic interaction
[228].

Figure 5.13: Visualization of a healthy knee joint completing flexion-extension
motion from experimental data, including the helical axes HATFV [t]

(green) and HAPFV [t] (blue).
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Figure 5.14: Another example of YaDiV plugin. Plugin for the creation of knee
coordinate systems [167].

5.5.2 Overall similarity visualization for comparison of helical axis data

The lack of robust capabilities in the analysis of helical axes which previous
works offered has limited the possibilities of analysis of motion sequences
(c.f. Sec. 5.2.2). Previous works were insufficient to intuitively discern the
overall similarity between the motion sequences corresponding to different
cases and states.

For the comparison of motion sequences, it is useful to have a notion
of length on SE(3). A natural notion of length on Lie groups is generally
provided by a so–called bi–invariant Riemannian metric which can be
induced by defining a positive definite inner product on the corresponding
Lie algebra. This approach works for the group of rotations SO(3), but
the Lie algebra se(3) of SE(3) is not naturally equipped with a positive
definite inner product and no such prescription induces a bi–invariant
Riemannian metric on SE(3). Nevertheless, a fixed inner product can be
extended to a right- (or left-) invariant metric, which still provides a useful
means of comparing rigid body motions. By assuming the Lie algebra se(3)

to be equipped with the Euclidean inner product, it is possible to identify
se(3) ' R6 introduced in Sec. 5.4.2 [47, 158]. This induces a norm |·| on
se(3) which is sufficient for the purpose of this work.

Thus, a measure of the similarity between two sequences of motion
ξ, ξ̃ : [α0,αn]→ se(3) is given by

d(ξ, ξ̃)2 =
∫αn
α0

|ξ(α) − ξ̃(α)|2 dα. (5.9)

If ξ(α) and ξ̃(α) are represented according to eq. (5.6) by corresponding
coefficient vectors c, c̃ ∈ (R6)d+1, then the last equation reduces to

d(ξ, ξ̃)2 =
d∑
k=0

|ck − c̃k|
2. (5.10)

This follows from the orthogonality of the Legendre polynomials exhibited
in eq. (5.7).

A collection of motion sequences can be compared based on this measure
of similarity by employing classical multidimensional scaling approaches
[55], reducing the dimensionality of the space from (R6)d+1 to two dimen-
sions [153]. For the transformation of those data into a spatial presentation
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being graphically intuitively accessible (i.e. InfoVis, c.f. Sec. 2.1.3.2), a classi-
cal MDS approach is employed [68] (Fig. 5.15, note that the measurement
is dimensionless) which was also used in Reuter et al. [181] with a similar
aim.

Figure 5.15: Scheme of the proposed overall similarity visualization (see Fig. 5.21

for details).

5.6 multi–scale exploration of the knee joint data

As described in Sec. 2.3.2, a complete visualization of multi-scale data such
as those obtained from the knee joint articulation needs a visualization that
satisfies the multimodal and multi-scale requirements. First, it requires data
acquired from different acquisition modalities. In this application scenario,
for now, CT images and kinematic data are employed in order to analyze
the knee joint flexion motion. Moreover, finding the relevant factors for the
characterization of potential musculoskeletal diseases requires data and
knowledge from multiple spatial scales and other different medical special-
ties. For instance, for the study of the correlation between degeneration of
the articular cartilage and medial deviation of mechanical axes, e.g. [117],
the use of data coming from different fields such as biomechanical and
tissue engineering becomes important.

The intra-scale visualizations described in this chapter (c.f. Sec. 5.5) have
dealt with the multi-modal requirement, and have been focused only on the
behavioral scale. Both the anatomical and similarity visualizations of helical
axis data constitute enhanced intra-scale visualizations, as proposed in the
methodology of this work (c.f. Sec. 3.5). In the following, it is proposed
to extend the role of such visualizations to a multi–scale scenario, where
those methods can be used together with other related data sets distributed
accross multiple spatial scales for a global investigation of knee joint data.
To this aim, the aforementioned intra-scale visualizations are proposed to
be integrated in the multi-scale visualization environment (Fig. 5.16), as
described in more detail in Chapter 4.

The multi-scale visualization environment effectively supports the explo-
ration of biomedical knowledge coming from different spatial scales and the
known relationships between them. The system addresses portability and
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scalability requirements, being able to deal effectively with the visualization
of massive data sets. Its flexible object oriented structure allows previously
developed viewers to be re–used and easily extended as rendering workers
within the exploratory environment (c.f. Sec. 4.5).

The environment makes use of a multilayered visualization (c.f. Sec. 3.2),
employing a flexible combination of SciVis and InfoVis views (c.f. Sec. 3.3).
Data sets are distributed over several layers, distinguished by the depth, the
nearest being the most important for the user. SciVis views, such as the three–
dimensional visualization of helical axes, and InfoVis ones, such as the view
of similarity among helical axis sequences, are displayed independently and
consistently in different nodes. These nodes are connected through visual
links, representing semantic relations, which are obtained with information
extracted from the multi-scale ontology. This ontology encompasses the
multi-scale biomedical knowledge and the information for obtaining all
necessary visualization parameters (c.f. Sec. 3.4).

Figure 5.16: Multi–scale visualization environment for exploration of knee joint
related data and the intra-scale visualizations for the analysis of helical
axis data.
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5.7 results

This section presents the results obtained in the application scenario by
using kinematical data from experimental sequences as well as knee joint
related data of multi-scale nature, exemplarily demonstrating the utility of
the proposed visualization techniques.

Regarding the kinematical data, the techniques have processed experi-
mental data gathered in the data collection, as described in Sec. 5.4.5. The
performed data collection has provided several motion sequences, being
each sequence the result of a tracking measurement. The collection has
included specimens of left and right legs prior to and after surgery of total
knee replacement. For the surgery, two different techniques have been ap-
plied: measured resection and patella in place gap balancing [71]. Repeated
measurements have been performed on each individual case to obtain a
representative amount of kinematical data. Regarding the knee joint re-
lated data of multi-scale nature, data sets described in Table A.1 have been
employed, as previously used in Chapter 4.

The following subsections demonstrate the description of the IHA in
terms of Lie algebra, the anatomical and similarity intra-scale visualizations
of helical axis data as well as the visualization of helical axes data in a
multi-scale scenario.

Instantaneous helical axes in terms of Lie algebra

In the following, motion sequences are discussed in the Lie group of rigid
body motions. Its associated Lie algebra is used to i) parametrize the rigid
body motions, ii) perform the polynomial fitting of motion sequences and
iii) compute subsequently instantaneous helical axes.

Initially, the processing methodology is exemplified focusing first on an
individual motion sequence, coming from a left leg of a healthy specimen.
Figure 5.17 illustrates the use of Lie algebra as a space to describe rigid
body motions. Concretely, it depicts individual samples representing the
rigid body motions relating the anatomical femur coordinate system and
the anatomical tibia coordinate system in terms of twists, as discussed in
Sec. 5.4.6. The two plots show the individual components ωx,ωy,ωz and
vx, vy, vz of twists ξ = (ω, v) parametrized by the flexion angle α. The range
encompasses from α0 = 5° to αn = 115°.

The measured samples are smoothly approximated by a low order poly-
nomial ξ(α), as discussed in Sec. 5.4.6. In the case of the obtained motion
sequences, a third–order approximation suffices for a high degree of accu-
racy while avoiding oscillatory behavior. In addition, the polynomial fitting
effectively allows to deal with the non–uniform spacing and potentially
different numbers of data samples present in the motion sequences.

The lack of oscillations is extremely important for ensuring a stable
derivative which is essential for computing the instantaneous helical axis
using eq. (5.8). Figure 5.18 compares the individual components of the
helical axes ωx,ωy,ωz by using the proposed approach and the approach
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Figure 5.17: Representation of a sampled motion sequence within the Lie algebra
se(3) with a third order polynomial approximation. The points indi-
cate the individual samples representing rigid body motion from the
established approach. The polynomial fitting within the Lie algebra
performed in the proposed approach allows the obtaining of valid and
smooth helical axes for further steps on visualization.

based on van den Bogert et al. [218], with some adaptations of the algorithm
presented in Spoor et al. [202] and accuracy improvements proposed in
Metzger et. al [148]. Despite of those adaptations, the established approach
are still sensitive to noise. The proposed approach provides a smooth and
valid sequence of helical axes, as it assures the sequence to be in the Lie
group of rigid body motions.
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Figure 5.18: Instantaneous helical axes obtained with the proposed method (contin-
uous curves) and based on van den Bogert et al. [218] (samples). The
established approach obtains finite helical axes, which are sensitive to
noise. The proposed method obtains smooth and valid helical axes.

Anatomical visualization of helical axis data

Following up the intermediate results indicated in previous figures, results
of the corresponding anatomical visualization of the motion sequence are
shown in Figs. 5.19, 5.20.

In Fig. 5.19, the panel on the right side provides a three–dimensional view
of the fully segmented knee joint including a depiction of the helical axis in
terms of the point of rotation pα and the direction vector ωα, for a chosen

Figure 5.19: Anatomical visualization of helical axis data.
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flexion angle α. The motion of the knee joint can be studied interactively by
smoothly varying α within the available bounds and selecting individual
positions or ranges for inspection using the available tools (e.g. showing the
trajectory of pα on the sagittal plane). The left panel presents a transversal
two–dimensional cross section of the knee joint assisting the user to take
advantage of the several segmentation tools also available in the extension
of YaDiV [82].

Figure 5.20 shows the trajectory of pα on the sagittal plane within the
developed viewer as obtained by (a) using the proposed method and (b)
the approach described in van den Bogert et al. [218], demonstrating again
the smoothness of the results with the proposed approach.

Figure 5.20: Anatomical visualization of the helical axis data, (a) with the proposed
method and (b) based on van den Bogert et al. [218].

Overall similarity visualization for comparison of helical axis data

Apart from the analysis and visualization of an individual sequence, another
intra-scale visualization allows for comparing several motion sequences
chosen by the user within the exploratory environment. An example is
depicted in Fig. 5.21, where three sequences from a subject after a patella in
place gap balancing (denoted by P) surgery are compared with sequences
corresponding to the pre–operative native state (denoted by N).

Figure 5.21 shows a qualitative measurement of similarity, proposed in
Sec. 5.5.2, based on the eq. (5.9) and the PCA approach (note that this
measurement is dimensionless). Each point represents a twist trajectory, as
shown in the Fig. 5.17. Therefore, the proposed approach is adequate as a
visual aid for discriminating between overall sequences. In addition, the
resultant clustering confirms the stability of the results with the proposed
methodology. The Euclidean distance between centroids of the cluster
comparing pre- and postoperative sequences over the same knee constitutes
a method for comparing motion sequences.
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Figure 5.21: Overall similarity visualization for comparison of helical axis data
on a subject with motion sequences in a pre– (denoted by N) and
post–operative state (P).

Multi–scale exploration of the knee joint data

Finally, the developed intra-scale visualizations for kinematical analysis can
be incorporated into the multi-scale visualization environment (c.f. Sec. 5.6
and Chapter 4 in detail), which constitutes a higher level framework for the
study of knee joint data. A larger framework of information available to a
range of specialists with more accurate and detailed analysis presents the
ability to observe variances of the knee state and causal output. In particular,
the analysis of musculoskeletal diseases, such as osteoarthritis, requires the
kinematic behavior to be explored together with data sets from the organic
and cellular scales (c.f. Sec. 5.2.3).

Figure 5.22 exemplarily depicts the exploration of patient–specific knee
joint related data with the help of the multi–scale visualization environment.
Intra-scale visualizations of helical axis data (behavioral scale) are explored
together with other related data sets for a complete analysis of knee joint
diseases with a multi–scale nature. In the example, it incorporates views of
the cartilage (organ scale), including a femoral cartilage thickness map and
a 3D reconstruction of a micro–CT scan from a cartilage sample, with some
structural characteristics represented by an InfoVis visualization placed in
the neighborhood of the latter, and histological images of cross sections
(cellular scale).

The proposed environment (c.f. Sec. 4.3) can combine the visualizations
provided by different rendering worker entities (c.f. Sec. 4.5), allowing for a
global overview and interpretation of all the involved data sets, spatially
emphasizing the relationships among them. For instance, the arrow between
the nodes containing the thickness and the cartilage structure in Fig. 5.22

could imply that there is a potential disease feature which relates both of
them, in this specific example indicating that a progressive loss of cartilage
can be foreseen in structural properties of cartilage samples. Such domain
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Figure 5.22: Proposal of exploration of patient–specific knee joint related data with
the help of the multi–scale visualization environment including the
intra-scale visualizations for the analysis of helical axis data. In the
image, the user is exploring the anatomical visualization of helical
axes in the focus layer.

knowledge is provided by medical experts and can be encoded in the multi-
scale ontology (c.f. Sec. 4.4) [13]. Therefore, the proposed presentation also
allows the knowledge of kinematical analysis based on helical axes to be
shared in the context of multidisciplinary work involving other experts.

5.8 discussion

This chapter presents a set of visualization methods for inspecting knee
joint articulation data (Table 5.4). The initial description of helical axes
based on concepts of Lie group leads to accurate and intuitive intra-scale
visualizations for the analysis of kinematical data. Together with the multi-
scale visualization environment, they allow a flexible exploration of the
discussed data sets and of related data, thereby supporting the clinical
workflow during the analysis of the knee joint articulation.

The description of the knee joint motion based on helical axes presented in
this work (c.f. Sec. 5.4) considers both the FHA describing a rigid body
transformation relating two different configurations of the knee joint as
well as the IHA of a smooth rigid body motion. Both descriptions based on
helical axes are naturally discussed in the context of the Lie group SE(3)
of rigid body motions and its associated Lie algebra se(3), which gener-
alizes the description of rigid body motions made with Euler or Cardan
angles in 3D. Approximating a sequence of rigid body transformations by
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Table 5.4: Summary of properties of the proposed approach for helical axis data
visualization and analysis.

Aspect Proposed approach

Description of motion based on helical axes Method of IHA in terms of Lie algebra: Valid
and smooth helical axes

Visualization of helical axes 3D and patient-specific anatomical intra-scale
visualization: Intuitive presentation of helical
axis data

Comparison of helical axis data Overall similarity visualization: Stable and
InfoVis analysis among motion sequences

Analysis of knee joint functional articulation
and related musculoskeletal diseases

Multi-scale visualization environment including
the previous intra-scale visualizations

a smooth trajectory is conveniently done within se(3) and then mapped
onto the Lie group SE(3) by the exponential map. This proposed method
ensures the obtaining of only valid rigid body transformations without
requiring artificial normalization or orthogonalization procedures, avoiding
common singularities associated with Euler or Cardan angles. By analyti-
cally differentiating the smooth trajectories, this method effectively allows
the calculation of smooth and valid helical axes. Figures 5.17, 5.18 show that
this proposed method allows for obtaining stable, valid and smooth helical
axes, allowing for the development of intra-scale visualizations methods
with practical impact.

The visualization of helical axes by means of a 3D and patient-specific anatom-
ical visualization allows for an inspection that relates the processed kinemati-
cal data to the individual patient–specific anatomy, as presented in Sec. 5.5.1.
The realistic visualization of bone motion incorporating helical axis data
provides with respect to previous works (e.g. Fig. 5.3) an understandable
and precise representation of the knee joint functional articulation. The pro-
posed description enables a smooth interactive visualization of knee joint
kinematics with several tools to interpret spatially the orientation, position
and the temporal trajectory of the helical axes with respect to the knee joint
anatomy. In clinical practice, the visualization (e.g. Fig. 5.19) can facilitate
to distinguish variances of surgery and prosthetic wear. The development
of aseptic loosening can also be easily visualized and better determine a
stage of revision surgery.

The comparison of helical axis data also benefits from the aforementioned
motion trajectory description, which naturally allows for a comparison
among several motion sequences by means of the overall similarity visu-
alization, as described in Sec. 5.5.2. A helpful overview for the study of
similarities among a collection of experimental data improves previous
visualizations focused on temporal variation of physical parameters, which
have the disadvantage of being visually unclear when comparing a sub-
stantially large collection of data (e.g. Fig. 5.4). The proposed similarity
visualization (Fig. 5.21) is potentially useful for epidemiological analysis
of surgical techniques, best fit implant type, alignment type, as well as
follow–up analysis.
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Regarding the analysis of knee joint articulation data, the aforementioned
intra-scale visualizations are proposed to be encompassed in the multi-scale
visualization environment (c.f. Sec. 5.6). This allows sources of information
with heterogeneous visual properties (e.g. InfoVis and SciVis) found across
different spatial scales as well as their known relationships to be explored
interactively as a whole. In the context of the study of musculoskeletal
diseases, this environment contributes to the support of the visualization
of causality across evidences existing within multi-scale biomedical data.
Therefore, the multi-scale visualization environment (Fig. 5.16) potentially
enables a complete exploration of the knee joint data (possibly in multiple
states, e.g. comparing pre– and post–operative states) incorporating the
developed intra-scale visualizations as well as views from other related
non-kinematical data sets.





6
C O N C L U S I O N S A N D F U T U R E W O R K

This work presents several processing methods in order to improve the
visualization of multi-scale biomedical data, exemplified with knee joint
articulation data as application scenario. The designed multi-scale visualiza-
tion environment allows for the presentation of a complete set of multi-scale
data with different visualization properties in a single view [150, 192]. In
addition, the designed environment incorporates semantics for the enrich-
ment of the multi-scale visualization [35], allowing scientists to amplify the
cognition about the multi-scale data present in the visualization scene. In
this context, the enhanced intra-scale visualizations are applicable to enrich
the presentation and analysis of data within the considered scale. In this
work, very relevant methods have been developed for the analysis of knee
joint kinematics at the behavioral scale [151, 153].

The major contributions of this thesis can be summarized in the following
aspects:

• Design and development of a multi-scale visualization environ-
ment for multi-scale medical data analysis: Integrated visualizations
have been demanded by the biomedical community for a simulta-
neous presentation and exploration of data across multiples scales.
However, recent works have not facilitated those tasks, and the com-
munity still make use of traditional isolated visualization systems,
which allow only the exploration of features involving a concrete data
type. In this work, the developed multi-scale visualization based on
a 3D multilayered environment, visual links and a combination of
SciVis and InfoVis techniques allows a consistent presentation and
navigation of heterogeneous biomedical data. The approach of this
environment encompasses data from different spatiotemporal ranges
and levels of abstraction, and potentially supports the various medical
domains involved in the analysis of the data.

• Support of multi-scale visualization based on knowledge formal-
ization: The difficulty of exploring heterogeneous data sets increases
if ways to understand the meaning of such data sets and their relations
are not provided. In this work, the semantic organization provided by
ontology is used in the multi-scale environment for extracting visual
parameters and semantic information useful for the creation, cus-
tomization and enrichment of the visualization scene. This approach
allows for a meaningful presentation and navigation across the data
sets of multi-scale nature.

• Analysis and visualization of kinematical data of the knee joint
articulation: The computational methodology approach for the de-
scription of motion based on helical axes makes use of the Lie group
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of rigid body motions and its Lie algebra for a natural representation
of motion sequences. This approach allows for obtaining stable, valid
and smooth helical axes from in-vitro kinematical measurements. The
developed intra-scale anatomical and similarity visualizations, based
on this computational methodology, improve the clinical workflow
during the analysis of surgical techniques and implant types, as well
as the evaluation of follow-up rehabilitation approaches.

The limited attention given to the potential users of visualization ana-
lyzing their demands and their underlying fields has been criticized in the
literature [137, 221, 152]. In this work, visualization processing methods
have been developed during an interplay of working with and for differ-
ent experts in biomedicine, e.g. biologists, biomechanical engineers. This
interaction framework, based on the analysis of scientists’ needs and their
underlying fields, has been essential in order that such visualization process-
ing methods contribute to the improvement of the insight into biomedical
phenomena and their medical applications.

In the following, the aforementioned aspects are detailed.

Design and development of a multi-scale visualization environment for multi-scale
medical data analysis.

The interplay of domains of science across spatial scales is beneficial for a
more complete analysis of biological phenomena. Resulting from a multi-
disciplinary conception among scientists and visualization researchers, the
observation and quantification of natural processes occurring at multiple
scales require a multi-scale framework. However, works until now (c.f. Chap-
ter 2) have shown that no efforts have been made in terms of visualization in
order to aid scientists in the multi-scale biomedical exploration. There had
been a lack of visualization strategies able to deal with the complete range
of biological data obtained with the large number of diverse acquisition
modalities, as in recent works small scale data do not have visibility in
large scale views. In addition, current multimodal frameworks had been
insufficient for completely understanding biomedical phenomena, as they
do not provide semantic means to visually understand internal relations
between data sets. Integrated visualization environments desired by the
biomedical community would allow a simultaneous presentation of and
navigation across data from multiple spatial scales and modalities including
visual links (Fig. 2.20).

The proposed exploratory environment (c.f. Chapter 4) supports effec-
tively the analysis of multi-scale biomedical data which encompass diverse
spatiotemporal ranges and levels of abstraction, such as osteoarthritis (c.f.
Sec. 4.6, Fig. 4.26) [150, 192]. The proposed visualization (c.f. Sec. 4.3) allows
for the presentation of a complete set of multi-scale data sets as individual
nodes in a single view, visually indicating semantic connections between
the nodes in order to understand relations of the contained data sets, e.g.
the propagation of the cartilage degradation evidenced in each data set. In
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this context, the established differentiation between SciVis and InfoVis tech-
niques was overcame in order to maximize the visualization capabilities for
the exploration of biomedical data sets and their relations. Its architecture
(c.f. Sec. 4.5) makes feasible the presentation of large data sets in a single
view. This approach potentially facilitates the work of a multidisciplinary
group of specialists collaboratelly working on the analysis of pathologies
that involves multi-scale data, as they could still use their habitual visual-
izations in a wider and richer scenario. The environment allows an intuitive
and fast observation of the relevant data sets, as well as a spatial observation
of relationships among them.

Support of visualization based on knowledge formalization

A meaningful representation of data sets in a multi-scale scenario is required
due to the difficulty of exploring heterogeneous and multidisciplinary data.
First, the heterogeneity of data (regarding the spatial scale they belong
to, the discipline which studies them, and the visualization techniques
employed to represent them) requires semantic organization to understand
the meaning of such data sets and their relations. Second, the need of
semantic means gains even more importance in a multidisciplinary scenario,
as scientists have depth expertise in one concrete specialty, but they lack
the big picture.

The multi-scale visualization environment proposes the semantic orga-
nization provided by an application ontology in order to extract visual
parameters and semantic information useful for the creation, customization
and enrichment of the visualization scene (c.f. Sec. 4.4) [35]. As example of
application, it makes use of knowledge of the involved domains stored by
means of the application ontology namely the multi-scale ontology [13]. The
visualization is supported through ontology by providing semantic means
to carry out several tasks for the presentation of data within the exploratory
system for the user, such as customization of the visualization scene and
extraction of semantic links among multi-scale data sets. The combination
of the multi-scale ontology with the multi-scale visualization environment
provides a cognitively rich and realistic presentation and exploration of the
data sets, integrating visualization at the conceptual level with visualiza-
tion of patient data [150]. This combination also overcomes the traditional
ontology visualization tools, based on only InfoVis techniques without real-
istic representations, which would hinder the use of formalized semantic
description.

Analysis and visualization of kinematical data of the knee joint articulation

A very relevant contribution has been performed at the behavioral scale of
the study of human joint articulation. Enhanced intra-scale visualizations
have been developed for accurately characterizing and interpreting kine-
matical data of flexion-extension motion of the knee joint in terms of helical
axes.
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The methods based on the helical axis concept have the potential to signif-
icantly contribute in clinical practice, e.g. the analysis of surgical techniques
and implant types as well as the evaluation of follow-up rehabilitation ap-
proaches. However, tools found in the literature were insufficient for these
applications as they were lacking in terms of robust analysis capabilities
and intuitive visualization.

In this work it has been described how the use of the Lie group of rigid
body motions, particularly its Lie algebra and the exponential map relating
those supply a smooth description of a given discrete knee motion sequence,
obtaining computationally stable and valid instantaneous helical axes. This
computational methodology leads to a set of intra-scale visualizations
with practical impact. First, the designed patient-specific three-dimensional
visualization of the instantaneous helical axes provides an intuitive inter-
pretation of the axes and their geometrical relation with respect to the
knee joint anatomy. Second, the similarity visualization compares across
several motion sequences allows to efficiently differentiate among several
cases and states of knee joint in the course of medical analysis and surgery.
The aforementioned visualizations are proposed in the framework of the
multi-scale environment, allowing also for a global analysis of knee joint
related data, including data sets acquired from different modalities and
spatial scales [153].

This set of visualization methods improves the clinical workflow for the
analysis of the knee joint articulation (c.f. Chapter 5). First, the anatomical
visualization provides to the clinicians a more direct and specific repre-
sentation to observe the true motion of the bones with respect to a graph
indicating the flexion-extension axes [151]. This method facilitates to dis-
tinguish variances of surgery, prosthetic wear and states. For instance, the
development and resultance of aseptic loosening can be easily visualized
and better determine a stage for revision surgery. Second, the similarity vi-
sualization improves previous visualizations focused on temporal variation
of physical parameters, which were visually unclear when comparing a
considerable large data collection. This method is useful for epidemiological
analysis of surgical techniques, best fit implant type, alignment type, as well
as follow–up analysis. Finally, the multi-scale visualization environment is
proposed as a framework in order to support the aforementioned tasks for a
global exploration of the knee joint related data (possibly in multiple states,
e.g. comparing pre– and post–operative states) incorporating the developed
kinematical methods and other related non-kinematical data sets.

Design and development of scientist-centered visualizations

All the developed visualization methods have been performed following
a design based on a scientist-centered approach. Sometimes it is forgotten
that the user is the indispensable main actor of the visualization process and
"responsible" for getting insight from the phenomena under analysis, in the
same way as the user sometimes underestimates the importance of aspects
such as software architecture required in order to obtain a visualization.
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At the beginning of a collaboration for designing a visualization tool, a
bridge of expectations between the scientist (future visualization user) and
the visualization researcher (creator of the visualization) is usually formed.
This fact is due to the lack of an alliance between visualization researchers
and the fields of application of visualization, which has been required in
the literature [137, 221] as well as during recent visualization conferences.

In this work, the designed visualization methods have been developed
in the context of a methodology (c.f. Chapter 3) which analyzes scien-
tists’ needs and their underlying fields, including different aspects, such
as: initial specification of data, objective, context of application, common
understandable representation and continuous evaluation. Different experts
in biomedicine – biomechanical engineers, radiologists, biologists under the
MultiScaleHuman Project [15] – have collaborated in order to reciprocally
be helped: to facilitate them to amplify their cognition about physiological
human articulation. Only after this kind of sinergies can visualization im-
prove through the means of new and novel methods the biomedical data
exploration and their further interpretation by biomedical experts.

future work

There are several ways of applying and expanding the visualization methods
proposed in this work. Some of the more promising possibilities are:

Applicability of the exploratory environment in other fields and scales

The application scenario (c.f. Chapter 5) described in this work for the
analysis of knee joint articulation can be considered to be applicable for
any other scientific field where specialists are working on the exploration of
multimodal or multi-scale biomedical data. One example is the exploration
of dynamic images for functional evaluation and modeling of muscular
activity [216] (c.f. Sec. 4.8).

Following up with the application scenario, similar investigations as the
ones performed in this work at the behavioral scale can be performed at
other scales, contributing with new enhanced intra-scale visualizations for
improving the understanding of data attached to those concrete scale. All
intra-scale visualizations and new improvements can be encompassed in
the multi-scale visualization environment. The scalability of its software
architecture allows that every new visualization can be represented in a
node, including new information for the multi-scale ontology. Together
with experts in the field, the knowledge is augmented with their find-
ings, discussing their conclusions and continuing the discovery by using
the visualization environment. In this context, the next step could be the
development of a rendering worker which includes all the features of YaDiV.

Adaptiveness of the multi-scale visualization environment

In this work, semantics is incorporated in a multi-scale visualization envi-
ronment to provide visual means to identify relevant items for a didactical



168 conclusions and future work

presentation to the user. The introduction of semantics in this context opens
new roads for further integration between visualization and knowledge
formalization.

An interesting example is a further support of collaborative diagnosis,
introduced in [150]. Consider a scenario where different medical specialists
could work together in the same environment, share experiences with
each other and formulate conjectures, e.g. involving the exploration of
past studies. This scenario requires a dynamic use of the visualization and
semantics, where both are adapted during the workflow of the specialists.
Thus, the visualization composition should be dynamically performed
according to the knowledge, which should vary according to the inclusion
of the formulated conjectures. In this case, the user interface should be
extended in order to receive and process such hypotheses. Initial ideas in
this direction are the integration of scoring techniques on the knowledge
base level, influence positioning of nodes based on user interests, as well as
the incorporation of a voice recognition system.

The integration of customized visualizations with semantics can also
improve the medical support based on artificial intelligence and the experts’
workflow for interpreting medical data. Currently, systems as PACS (Picture
Archiving and Communication System) or RIS (Radiology Information Sys-
tem) allow only to centralize data, where experts from different specialties
can obtain medical information from a centralized repository. Idealistically,
the integration of systems as PACS within the proposed methodology would
provide experts not only organized data, but also related knowledge among
these data (metadata) as well as a global visualization framework and a
customized set of visualization tools according to the scientist’s field and
interests for supporting knowledge discovery.

Improvements on the visualization and analysis of the knee joint articulation at the
behavioral scale

The performed intra-scale visualizations described in the application sce-
nario have also several interesting future steps to investigate.

Regarding the anatomical visualization (c.f. Sec. 5.5.1), establishing an
automated mapping between the anatomical landmarks detected in the
visualization tool and in the experiments is desirable, as it is currently based
on the expertise of surgeons and biomechanical engineers. An alternative
is the combination of automatic landmark detection with 3D printing tech-
nologies in order to produce patient–specific bone templates for a guided
determination of the landmarks prior to the data collection. This improve-
ment would facilitate the translation of this visualization method to the
clinical practice in surgical operations, as the optical tracking technique
employed in the data collection is also used during total knee replacement
surgeries. Thus, surgeons could potentially make use of this tool to evaluate
during operations the behavior of the helical axes. Regarding the similarity
visualization (c.f. Sec. 5.5.2), extended kinematical studies yielding a large
collection of motion sequences could lead to better models of healthy vs.
pathological knee joint functionality.
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A
TA B L E O F D ATA S E T S

Table A.1 lists the data sets used in the proposed multi-scale visualization
environment, including the following features: visualization properties,
technique, degradation process feature, source of evidence, user profile and
spatial scale (c.f. Chapter 4). Note that those data sets do not correspond to
the same patient, therefore they might be affected with different grades or
states of diseases. However, in terms of visualization, they serve for illustra-
tion purposes when describing the multi-scale visualization environment.
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Table A.1: Multi-scale data sets

Data set Description Visualization
properties

Technique Degradation
process
feature

Source of
Evidence

User
profile

Spatial
scale

Histology-
AlcianBlue

Articular cartilage slices by
using Alcian blue for the
staining method

Set of
images

Alcian
blue
histology

Cellular
change

Cell dediffer-
entiation,
hypertrophy

Molecular
biologist,
Tissue
engineer

Micro

Histology-
SafraninO

Articular cartilage slices by
using Safranin O for the
staining method

Set of
images

Safranin
O
histology

Loss of
biome-
chanical
funcion

Disruption
of the macro-
molecule
content

Molecular
biologist,
Tissue
engineer

Micro

Cartilage-
Structure

3D reconstruction of volume
of interest (VOI) from
micro-CT scans of cartilage

Volume Micro-CT Loss of
biome-
chanical
function

Swelling, Hy-
perhydration,
Tissue
softening

Molecular
biologist,
Tissue
engineer

Micro

Porosity-
Variability

Variation of the fraction of
the volume of voids over the
total volume along the
different layers of the VOI of
cartilage
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The author of this thesis has been co-author of the following publications,
listed in chronological order. This annex is intended to summarize the
contributions of the author in those scientific works.

• Millán Vaquero R., Rzepecki J., Friese K.-I., Wolter F.-E. Visualization
and User Interaction Methods for Multiscale Biomedical Data. In: 3D
Multiscale Physiological Human. pp. 107-133. Springer. 2014 [152].

This work describes visualization and interaction approaches for the
exploration of multi-scale biomedical data. The increasing amounts
of data at different scales has the potential to explore complex phe-
nomena in human physiology which spread amongst multiple scales,
therefore requiring an analysis of current multi-scale visualization
and interaction methods. In this publication, the author of this thesis
focuses on the visualization part. The author discusses the current
complexity of representing biomedical data, and describes current
techniques and proposes alternatives for multi-scale visualization.

• Agibetov, A., Millán Vaquero R., Friese, K.-I., Patanè, G., Spagnuolo,
M., Wolter, F.-E. Integrated Visualization and Analysis of a Multi-
scale Biomedical Knowledge Space. In EuroVis Workshop on Visual
Analytics pp. 25-29. The Eurographics Association. 2014 [35].

This work proposes a visualization prototype to integrate a multi-
scale biomedical data set into the same view, taking advantage of
the biomedical knowledge about the data and their connections for-
malized in an ontology. In this publication, the author of this thesis
focuses on the design of a specific integrated multi-scale visualization
approach. The author identifies properties for the classification of
multi-scale biomedical data, to be encoded into the ontology. This in-
formation allows for obtaining visual parameters and semantic means
to configure by the author the visualization environment, as exempli-
fied within a scenario dealing with the exploration of musculoskeletal
diseases.

• Rzepecki J., Millán Vaquero R., Vais A., Friese K.-I., Wolter F.-E. Multi-
modal Approach for Natural Biomedical Multi-scale Exploration. In
Advances in Visual Computing: 10th International Symposium on
Visual Computing. pp. 620-631. Springer. 2014. [192].

This paper presents an approach for the exploration of multi-scale
biomedical data, combining the proposed visualization with hand and
haptic interaction. In this publication, the author of this thesis focuses
on the concrete realization of the visualization environment, based
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on a multilayered workspace and a flexible combination of scientific
and information visualization, including an evaluation yielding a
preliminary analysis of the introduced features.

• Millán Vaquero R., Agibetov A., Rzepecki J., Ondrésik M., Vais A.
Oliveira, J.M., Patanè G., Friese K.-I., Reis R.L., Spagnuolo M., Wolter
F.-E. A semantically adaptable integrated visualization and natural
exploration of multi-scale biomedical data, 12th International Confer-
ence BioMedical Visualization MediVis 2015. pp. 543-552. IEEE. 2015

[150].

This paper is a summary of the common efforts from visualization,
interaction and knowledge formalization in order to improve the
exploration of multi-scale biomedical data. In this publication, the
author of this thesis focuses on the visualization part, analyzing the
use of the visualization environment within an application scenario of
a biologist investigating a pathology that requires the analysis of knee
joint data from multiples scales. In particular the author compares
the traditional way of visualizing data related to the degradation of
articular cartilage during osteoarthritis with the one deduced from
the proposed methodology.

• Millán Vaquero R., Lynch S., Fleischer B., Rzepecki J., Friese K.-I.,
Hurschler C., Wolter F.-E. Enhanced visualization of knee joint func-
tional articulation based on helical axis method. Proceedings Bildver-
arbeitung für die Medizin 2015. pp. 449-454. IEEE. 2015 [151].

This work focuses on the visualization of knee joint data at behavioral
scale, concretely on the visualization of knee joint motion described
in terms of helical axes. In this publication, the author of this thesis
provides an enhanced intra-scale visualization for a realistic motion
representation of the knee joint functional articulation. Basing on
finite helical axis data obtained from biomechanical experiments, the
visualization has been developed in order to especially facilitate the
location of functional flexion axes in terms of anatomical bone motion.

• Millán Vaquero R., Vais A., Lynch S., Rzepecki J., Friese K.-I., Hurschler
C., Wolter F.-E. Helical axis data visualization and analysis of the
knee joint articulation. Journal of Biomechanical Engineering. ASME.
DOI:10.1115/1.4034005. 2016 [153].

Following up on the previous publication, this paper provides an
extended analysis of helical axis data and several visualization meth-
ods for investigating the knee joint articulation. In this publication,
the author of this thesis starts with the analysis of kinematical data
of flexion-extension motion of the knee joint provided from biome-
chanical engineers. Processing methods relying on Lie group theory
lead to a smooth description of motion sequences, which allow the
calculation of instantaneous helical axes for a more accurate data
evaluation. The described visualization methods, which include intra-
scale visualizations and the multi-scale environment, are proposed to
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support the analysis of motion sequences of knee joint articulations
and their related data.
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