Artikel:
Guido Böttcher, Dennis Allerkamp, Franz-Erich Wolter,
"Multi-Rate Coupling of Physical Simulations for Haptic Interaction with Deformable Objects",
The Visual Computer
26
(2010),
no. 6-8,
903-914,
Special Issue to the Computer Graphics International Conference 2010
ftp://ftp.gdv.uni-hannover.de/papers/boettcher2010-multirate_coupling.pdf
Real-time simulation of deformable objects involves many computational challenges to be solved, particularly in the context of haptic applications, where high update rates are necessary for obtaining a satisfying experience. The required performance can generally be achieved by introducing an intermediate layer responsible for the simulation of the small part of the surface being in contact with the fingers.
In this paper, we present an algorithm controlling the run-time of the concurrent simulation threads. It uses information from previous simulation steps to estimate the time spent in the simulation operation considering also changes in the geometry of the intermediate layer. The introduction of such a local contact simulation introduces damping to the overall system. Its effect on the dynamics of the simulation system is experimentally analysed with an interaction test.
Bücher:
Dennis Allerkamp,
"Tactile Perception of Textiles in a Virtual-Reality System",
2010.
http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-13973-4
Während seiner Arbeit im HAPTEX-Projekt und später in seiner Dissertation hat Dennis Allerkamp hier im Welfenlab die haptische Wahrnehmung des Menschen insbesondere für Anwendungen in virtuellen Umgebungen erforscht. Dabei entstanden sowohl eine haptische Simulation der Oberfläche von Textilien, als auch ein haptisches Display, das die simulierten Tastimpulse für einen Menschen fühlbar machen kann.
In seinem jetzt erschienenen Buch "Tactile Perception of Textiles in a Virtual-Reality System" beschreibt er ein solches System komplett von den wahrnehmungspsychologischen und biologischen Grundlagen bis hin zu der technischen Umsetzung und experimentellen Ergebnissen.
Das Buch erscheint in der COSMOS-Reihe des Springerverlags unter der ISBN 978-3-642-13973-4.
Konferenzen:
Karl-Ingo Friese, Franz-Erich Wolter,
"YaDiV - The Development of an Open Platform for 3D Visualization and 3D Segmentation of Medical Data",
2010.
3D Anatomical Human Summer School, Crete
Keynote Lecture, 3D Anatomical Human Summer School, 2010, Crete
Beiträge in Tagungsbänden:
Nadia Magnenat-Thalmann, Ugo Bonanni, Franz-Erich Wolter, Guido Böttcher,
"Manipulating Virtual Hair and Textiles",
14. ASIM Fachtagung: Simulation in Produktion und Logistik, Karlsruhe
,
(Gert Zülch, Patricia Stock, ed.),
KIT Scientific Publishing,
2010,
p. 19-26,
ftp://ftp.gdv.uni-hannover.de/papers/wolter2010-virtual_hair_and_textiles.pdf
The actions of modelling and manipulating virtual objects in three-dimensional environments are required for a number of applications in the virtual prototyping process for industrial production as well as in the movie and entertainment business. The research and development of interactive systems enabling such operations focus on reproducing the visual appearance, dynamic behaviour and contact response of the simulated objects. This paper presents two application examples of interactive manipulation frameworks which have been respectively designed for the interaction with virtual hair and virtual textiles.
Tina Thiessen, Martin Gutschke, Philipp Blanke, Wolfgang Mathis, Franz-Erich Wolter,
"Numerical Analysis of Relaxation Oscillators Based on a Differential Geometric Approach",
ICSES 2010, Gliwice, Poland,
2010,
fileadmin/forschung/publikationen/icses2010.pdf
The difficulties to analyse the state space of a special class of nonlinear electronic circuits are illustrated and a new method to treat these problems is presented. Theoretical aspects of circuit equations from a differential geometric point of view are considered and methods for solving circuit equations by means of algorithms from computational differential geometry are presented. In this paper differential geometric methods were applied to a relaxation oscillator and numerical results were achieved. We describe the behaviour of an emitter-coupled multivibrator with differential algebraic equations and compute its state space numerically.