Geometrisches Modellieren / CAD
Seit Jahren beschäftigen wir uns am Welfenlab mit der computergestützten Beschreibung und Konstruktion von geometrischen Objekten. Sowohl zweidimensionale Kurven, wie Bézier-Splines oder B-Splines, als auch dreidimensionale Flächen und Körper sind hier Gegenstand der Forschung. Das zwei- und dreidimensionale Geometrische Modellieren ist als Grundlage für die Darstellung computeranimierter Szenen in Film und Fernsehen, für die Konstruktion technischer Produkte, wie Flugzeugen oder Bügeleisen, oder das Design von Buchstaben, um nur einige Anwendungen zu nennen, allgegenwärtiger Bestandteil unserer Lebenswelt.
Eine gute Übersicht über die Grundlagen und Anwendung der wichtigsten Techniken im Bereich der Ingenieurwissenschaften findet sich z.B. in dem Aufsatz "Geometric Modeling for Engineering Applications" von Wolter et al. in der Encyclopedia of Computational Mechanics, erschienen bei J. Wiley & Sons, 2007.
Sehr eng verwandte Themen sind die Analyse und Erkennung von Gestalt, die Kompression der für die Modellierung benötigten teilweise sehr großen Datenmengen sowie die Visualisierung von Objekten. In einem Vortrag an der Brown University, Providence, USA hat Prof. Wolter 2003 eine Übersicht der Zusammenhänge zwischen "Konstruction", "Kognition" und "Kompression" von Gestalt gegeben.
Computer Aided Design (CAD)
In den letzten 30 Jahren hat in der Entwurfs- und Fertigungstechnologie aller industriellen Produkte eine Revolution stattgefunden. Während noch in den siebziger Jahren des letzten Jahrhunderts Entwürfe für ein industrielles Produkt mit technischen Zeichnungen beschrieben und daher auch in Papierform als Blaupausen archivert wurden, existieren seit einigen Jahren die Entwürfe großer und komplexer Produkte wie Verkehrsflugzeuge oder auch mittelgroßer Objekte wie Kraftfahrzeuge komplett in digitalisiertem Format und werden vollständig mit Daten aus CAD-Systemen beschrieben. Die Produkte liegen mit ihrer digitalen Beschreibung nun virtuell vor und können mit Visualisierungssystemen für technische oder ästhetische Inspektionen präzise dreidimensional und auch photorealistisch dargestellt werden. Schließlich werden aus diesen CAD-Daten automatisiert die Steuerungsdaten für Fertigungsmaschinen erzeugt, mit denen alle Teile der Produkte hergestellt werden.
Konstruktion in Virtuellen Welten
Der gesamte Entwurfsprozess inklusive des Prüfens und Testens der ingenieurstechnisch relevanten physikalischen Eigenschaften verlagert sich zunehmend in virtuelle Welten, in denen dann z.B. mit Simulations- und Visualisierungssystemen virtuelle Crash-Tests für Fahrzeuge durchgeführt werden, die noch nicht materiell existieren, sondern nur virtuell in digitalen Datensätzen von CAD-Systemen vorliegen. Dadurch verlagert sich ein fortwährend wachsender Teil des gesamten industriellen Erzeugungsprozesses zunehmend in einen virtuellen Raum, in dem dann auch ein großer Teil der industriellen Wertschöpfung stattfindet. In dieser "Virtuellen Realität" laufen schließlich die kreativsten, technisch anspruchsvollsten und daher kostbarsten Teile des gesamten Produktionsprozesses ab. Das hat zur Folge, dass die digitalen Datensätze, die die Geometrie der mühsam entwickelten virtuellen Objekte beschreiben, große Werte darstellen und auch vor unberechtigten Kopien geschützt werden müssen. Außerdem bereitet die Verwaltung der gewaltigen Menge digital vorliegender Objekte große Mühe. Die Suche nach Flächen-Datensätzen, die einer vorliegenden Fläche sehr ähnlich sind, ist schwierig. Für diese Suche wird bei herkömmlichen Verfahren oft geprüft, ob man eine Fläche so im Raum positionieren und skalieren kann, dass sie möglichst wenig von einer Vergleichsfläche abweicht. Diese sogenannten "Matching"-Verfahren (Passproben Vergleich) sind relativ zeitaufwendig, so dass ihr Einsatz beim Vergleich mit sehr vielen Flächen nicht anwendbar ist.